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Amony the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization
devices referred to as microarrays. Initially designed to measure yene transcriptional levels, microarray technoloyies are now
used for comparing other ygenome features amony individuals and their tissues and cells. Results provide valuable information on
disease subcateyories, disease proynosis, and treatment outcome. Likewise, they reveal differences in yenetic makeup, regula-
tory mechanisms, and subtle variations and move us closer to the era of personalized medicine. To understand this powerful tool,
its versatility, and how dramatically it is chanyging the molecular approach to biomedical and clinical research, this review de-
scribes the technoloyy, its applications, a didactic step-by-step review of a typical microarray protocol, and a real experiment.
Finally, it calls the attention of the medical community to the importance of integrating multidisciplinary teams to take advan-
tage of this fechnoloyy and its expanding applications that, in a slide, reveals our genetic inheritance and destiny.
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INTRODUCTION

Genomics approaches have changed
the way we do research in biology and
medicine. We now can measure the ma-
jority of mRNAs, proteins, metabolites,
protein-protein interactions, genomic mu-
tations, polymorphisms, epigenetic alter-
ations, and micro RNAs in a single ex-
periment. The data generated by these
methods together with the knowledge de-
rived by their analyses was unimaginable
just a few years ago. These techniques,
however, produce such amounts of data
that making sense of them is a difficult
task. So far, DNA microarray technologies
are perhaps the most successful and ma-
ture methodologies for high-throughput
and large-scale genomic analyses.

DNA microarray technologies initially
were designed to measure the transcrip-

tional levels of RNA transcripts derived
from thousands of genes within a genome
in a single experiment. This technology
has made it possible to relate physiologi-
cal cell states to gene expression patterns
for studying tumors, diseases progression,
cellular response to stimuli, and drug tar-
get identification. For example, subsets of
genes with increased and decreased activ-
ities (referred to as transcriptional profiles
or gene expression “signatures”) have
been identified for acute lymphoblast
leukemia (1), breast cancer (2), prostate
cancer (3), lung cancer (4), colon cancer
(5), multiple tumor types (6), apoptosis-
induction (7), tumorigenesis (8), and drug
response (9). Moreover, because the pub-
lished data is increasing every day, inte-
grated analysis of several studies or
“meta-analysis,” have been proposed in
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the literature (10). These approaches de-
tect generalities and particularities of gene
expression in diseases.

More recent uses of DNA microarrays in
biomedical research are not limited to gene
expression. DNA microarrays are being
used to detect single nucleotide polymor-
phisms (SNPs) of our genome (Hap Map
project) (11), aberrations in methylation
patterns (12), alterations in gene copy-
number (13), alternative RNA splicing (14),
and pathogen detection (15,16).

In the last ten or 15 years, high quality
arrays, standardized hybridization proto-
cols, accurate scanning technologies, and
robust computational methods have es-
tablished DNA microarray for gene ex-
pression as a powerful, mature, and easy
to use essential genomic tool. Although
the identification of the most relevant in-
formation from microarray experiments
is still under active research, very well
established methods are available for a
broad spectrum of experimental setups.
In this publication, we present the most
common uses of DNA microarray tech-
nologies, provide an overview of their
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frequent biomedical applications, de-
scribe the steps of a typical laboratory
procedure, guide the reader through the
processing of a real experiment to detect
differentially expressed genes, and list
valuable web-based microarray data and
software repositories.

TECHNOLOGY DESCRIPTION

It is well known that complementary
single-stranded sequences of nucleic
acids form double stranded hybrids. This
property is the basis of the very powerful
molecular biology tools such as Southern
and Northern blots, in situ hybridization,
and Polymerase Chain Reaction (PCR).
In these, specific single-stranded DNA
sequences are used to probe for its com-
plementary sequence (DNA or RNA)
forming hybrids. This same idea also is
used in DNA microarray technologies.
The aim, however, is not only to detect
but also to measure the expression levels
of not a few but rather thousands of
genes in the same experiment. For this
purpose, thousands of single-stranded
sequences that are complementary to
target sequences are bound, synthesized,
or spotted to a glass support whose size
is similar to a typical microscope slide.
There are mainly two types of DNA arrays,
depending on the type of spotted probes.
One uses small single-stranded oligonu-
cleotides (~22 nt) synthesized in situ
whose leading provider is Affymetrix
(Santa Clara, CA, USA, http://www.
affymetrix.com). The other type of arrays
uses complementary DNA (cDNA) ob-
tained by reverse transcription of the
genes’ messenger RNAs (mRNA), com-
pletion of the second strand, cloning of
the double-stranded DNAs, and typically
PCR amplification of their open reading
frames (ORF), which become the bound
probes. One of the limitations of using
large ORF or cDNA sequences is an un-
even optimal melting temperature
caused by differences in their sizes and
the content of GC-paired nucleotides. A
second problem is cross-hybridization of
closely related sequences, overlapped
genes, and splicing variants. In oligo-
based DNA arrays, the targeted nucleic
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Figure 1. Schematic Representation of a Gene Expression Microarray Assay. Arrows repre-
sent process (left column) and pictures or text represent the product. Differences in the
protocol in one- and two-dye technoloyies are specific to the technoloygy rather than to
the samples or question. For CGH, the process is similar, replacing mRNA by DNA.

acid specie is redundantly detected by
designing several complementary
oligonucleotides spanning each entire
target sequence by segments. The
oligonucleotides are designed in such a
way to avoid the cDNA probe draw-
backs and to maximize the specificity for
the target gene. Initially, DNA arrays
were based on nylon membranes that are
still in use. However, the glass provides
an excellent support for attaching the nu-
cleotide sequences, is less sensitive to
light than membranes, and is non-
porous, allowing the use of very small
amounts of sample. There is a more re-
cent and different technology that uses
designed oligonucleotide probes at-
tached to beads that are deposited ran-
domly in a support. The position of each
bead and hence the sequence it carries is
determined by a complex pseudo-se-
quencing process. These types of arrays,
provided by Illumina (SanDiego, CA,
USA, http:/ /www.illumina.com) are
mainly used for genotyping, copy-number
measurements, sequencing, and detect-

ing loss of heterozygosity (LOH), allele-
specific expression, and methylation. A
recent review of this technology has been
published elsewhere (17). For clinical re-
search, however, the preferred technology
so far is the oligo-based microarrays whose
leading provider is Affymetrix.

The general process in microarray
experiments is depicted in Figure 1.
Fluorescent dyes are used to label the
extracted mRNAs or amplified cDNAs
from the tissue or cell samples to be
analyzed. The DNA array is then hy-
bridized with the labeled sample(s) by
incubating, usually overnight, and
then washing to remove non-specific
hybrids. A laser excites the attached
fluorescent dyes to produce light which
is detected by a (confocal) scanner.
The scanner generates a digital image
from the excited microarray. The digital
image is further processed by special-
ized software to transform the image
of each spot to a numerical reading.
This process is performed, first, finding
the specific location and shape of each
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spot, followed by the integration (sum-
mation) of intensities inside the de-
fined spot, and, finally, estimating the
surrounding background noise. Back-
ground noise generally is subtracted
from the integrated signal. This final
reading is an integer value assumed to
be proportional to the concentration of
the target sequence in the sample to
which the probe in the spot is directed.
In competitive two-dye assays, the
reading is transformed to a ratio equal
to the relative abundance of the target
sequence (labeled with one type of flu-
orochrome) from a sample respect to a
reference sample (labeled with another
type of fluorochrome). In the one-dye
Affymetrix technologies, the fluores-
cence is commonly yellow, whereas in
two-dyes technologies the colors used
are green for reference and red for sample
(although a replicate using dye-swap is
common). The choice of the technology
that is more appropriate depends on
experimental design, availability, costs,
and the expected number of expression
changes. In general, when only a mi-
nority of the genes is expected to
change, a two-dye or reference design
is more suitable, otherwise a one-dye
technology may be more appropriate.
Finally, at the end of the experiment,
an important issue derived from statisti-
cal tests in microarray data is the concept
of the real significance of results and the
concomitant need for multiplicity of tests.
For example, when applying a t-test, the
result is the probability that the observed
values are given by chance. Commonly,
we call a result significant when the
probability is smaller than five percent.
For large-scale data, a t-test would be
performed thousands of times (one for
each gene) which means that from
10,000 t-tests at five percent of signifi-
cance level, we will call 500 genes differ-
entially expressed merely by chance
which is very close or even higher than
those actually selected from experi-
ments. Therefore, a correction to attempt
to control for false positives should be
performed. The most common correction
method is the False Discovery Rate
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Figure 2. Detection of Differential Expressed Genes. Laryge differences in yene expression
are likely to be yenuine differences between two groups of samples (A and B) whereas
small differences are unlikely to be fruly differences. Samples can be biological replicates

or unreplicated populational samples.

proposed originally by Benjamini and
Hochberg (18) and extended by Storey
and Tibshirani (19).

APPLICATIONS IN BIOMEDICAL
RESEARCH

The ultimate output from any microar-
ray assay, independent of the technology,
is to provide a measure for each gene or
probe of the relative abundance of the
complementary target in the examined
sample. In this section, we revise the
most common applications of the data
derived from clinical studies using mi-
croarrays irrespective of the technology
employed.

Relating Gene Expression to
Physiology: Differential Expressed
Genes

The most common and basic question
in DNA microarray experiments is
whether genes appear to be downregu-
lated (the expression has decreased) or
upregulated (the expression has in-
creased) between two or more groups
of samples. This type of analysis is es-

sential because it provides the simplest
characterization of the specific molecu-
lar differences that are associated with
a specific biological effect. These signa-
tures can be used to generate new hy-
potheses and guide the design of fur-
ther experiments. A statistical test is
used to assess each gene to determine
whether the expression is statistically
different between two or more groups
of samples (Figure 2). When comparing
populations of individuals, a large num-
ber of samples per class are needed to
avoid interference from variation due
to individuals rather than experimental
group. For laboratory-controlled sam-
ples, such as cell lines or strains, at least
three biological replicates are recom-
mended to compute a good estimate of
the variance, hence the statistical confi-
dence (as more replicates means more
confidence and fewer false positives).
Using a statistical technique called
power analysis, it is possible to estimate
the number of samples required to
identify a high percentage of truly dif-
ferentially regulated genes. Although
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the use of this approach is common
practice in the design of biological ex-
periments, its use is not widespread in
the microarray community.

To detect differentially expressed
genes, intuitive and formal statistical
approaches have been proposed. The
most famous intuitive approach, pro-
posed in early microarray studies, is the
fold change in fluorescence intensity
(20,21) expressed as the logarithm (base
2 or log,) of the sample divided by the
reference (ratios). In this way, fold
change equal to one means that the ex-
pression level has increased two fold
(upregulation), fold change equal to
-1 means that the expression level has
decreased two fold (downregulation)
whereas zero means that the expression
level has not changed. Larger values
account for larger fold changes. Genes
whose fold change is larger than a cer-
tain (arbitrary) value, are selected for
further analyses. Although fold change
is a very useful measure, the weak-
nesses of this criterion are the overesti-
mation for low expressed genes in the
reference (denominators close to zero
tend to elevate the value of the ratio),
the subjective nature of the value that
determines a “significant” change, and
the tendency to omit small but signifi-
cant changes in gene expression levels.
For these reasons, currently the most
sensible option is following formal sta-
tistical approaches to select differen-
tially expressed genes. For two groups
of samples, the common t-test is the eas-
iest option, while not the best, for ana-
lyzing two-dye microarrays whose log,
ratios generate normal-like distributions
after normalization (see next section),
and the ANOVA (analysis of variance)
test for more than two groups of sam-
ples. These options apply for both one-
and two-dye microarrays. If the data is
non-standardized, Wilcoxon or Mann-
Whitney tests may be applied. A com-
parison of differential expression statis-
tical tests, including t-test, has been
published elsewhere (22).

The approaches we have described are
univariate. That is, one gene is tested at
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Figure 3. Biomarker Detection. Larger differences in yene expression are more likely to be
ygenuine differences between two groups of samples (A and B) than smalll differences. In
this case, a large number of samples are more informative than individual replications.

a time independently of any other gene.
There are multivariate procedures how-
ever, where genes are tested in combina-
tions rather than isolated. Whilst being
more powerful (23-26), these approaches
require a more complex analysis.

Biomarker Detection: Supervised
Classification

Disease type and severity often are de-
termined by expert physicians or patholo-
gists on the basis of patient symptoms or
by analyzing features of the diseased tis-
sue obtained by biopsy inspection. This
categorization may allow the choice of ap-
propriate pharmacological or surgical
therapy. In this context, the availability of
molecular markers associated with clinical
outcome have been useful in allowing dis-
ease monitoring to begin at a very early
stage and complementing the clinical and
histo-pathological analysis. The more re-
cent application of DNA microarrays in
clinical research has been a very important
step toward the development of more
complex markers based on multi-gene sig-
natures. The identification of gene expres-

sion “signatures” associated with disease
categories is called biomarker detection or
supervised classification (Figure 3).

The fundamental difference between
identifying differentially expressed genes
and identifying a set of genes of real di-
agnostic or prognostic value is that a bio-
marker needs to be predictive of disease
class or clinical outcome. For this reason,
it must be possible to associate, to a given
set of marker genes, a rule that allows
identification of an unknown sample. The
classification accuracy of the biomarker
also needs to be determined with robust
statistical procedures. Therefore, during
the biomarker selection procedure, a sub-
stantial fraction of the samples are set
aside in order to evaluate independently
the accuracy of the selected biomarkers
(in terms of sensitivity and specificity).
Thus, such studies require a relatively
large number of samples.

We already explained that unlike differ-
ential expression, in biomarker selection
for diagnostics, a rule is needed to make
predictions. This rule is generated by a
classifier, a statistical model that assigns a
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sample to a certain category based on
gene expression values. For example, a
sensible classifier for diabetes is whether
sugar levels in serum reach certain value.
In statistics, this classifier is referred to as
univariate. That is, only one variable
(sugar level) is needed in the rule. Never-
theless, for DNA microarray studies, it is
common to obtain a large gene list useful
for disease discrimination. Multiple genes
provide robustness in the estimation and
consider potential synergy between genes.
Therefore, multivariate classifiers are com-
monly used. For example, it is well known
that obesity and parental predisposition
to diabetes, in addition to sugar levels in
serum, is a more precise diabetes diagno-
sis criteria. Multivariate classifier can be
designed using genes selected either by a
univariate method such as t-test, ANOVA,
Wilcoxon, PAM (27), Golub’s centroid (1),
or by a multivariate method (23-26).

Thus, the possibility to characterize the
molecular state of diseased tissues has
led to an improvement in prognosis and
diagnosis as well as providing evidence
of the existence of distinct disease sub-
classes in previously considered homo-
geneous diseases.

Describing the Relationship Between
the Molecular State of Biological
Samples: Unsupervised Classification
One key issue in the analysis of mi-
croarray data is finding genes with a
similar expression profile across a num-
ber of samples. Co-expressed genes have
the potential to be regulated by the same
transcriptional factors or to have similar
functions (for example belonging to the
same metabolic or signaling pathways).
The detection of co-expressed genes
therefore may reveal potential clinical
targets, genes with similar biological
functions, or expose novel biological
connections between genes. On the other
hand, we may want to describe the de-
gree of similarity between biological
samples at the transcriptional level (28).
We may expect such analysis to confirm
that samples with similar biological
properties (for example samples derived
from patients affected by the same dis-
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Figure 4. Unsupervised Classification and Detection of Co-expressed Genes. (A) Double-
Hierarchical clustering of yene expression values (heatmap), in rows by genes, and in
columns by samples. Similar samples (columns) generate clusters easily identified. For ex-
ample, the gene expression of samples A and C is similar across genes. However A and C
are different from the rest. Co-expressed genes (rows) form tight and small clusters. A se-
lected cluster framed by dotted lines is shown in B. (B) Hierarchical generation of clusters

from a selected group of yenes in A.

ease) tend to have a similar molecular
profile. Although this is true, it also has
been demonstrated that the molecular
profile of samples reflects disease hetero-
geneity and therefore it is useful in dis-
covering novel diseases sub-classes (5).
From the methodological prospective,
these questions can be addressed using
unsupervised clustering methods.

In this context, hierarchical clustering
is, among several options (29), one of the
most used unsupervised classification
methods (Figure 4). Other methods are
available in several software packages
such as R (The R Roundation for Statistical
Computing, http:/ /www.r-project.org),
GEPAS (30), TIGR T4 (31), (32), Gene-
Spring (33), and Genesis (34). The core
concept behind hierarchical clustering is
the progressive construction of gene or
sample cluster by adding one element
(gene, sample, or a smaller cluster) at the
time. In this way, more similar elements
are added early to small clusters whereas
less similar elements are added to later

forming larger clusters. To decide which
element is more similar to another, it is
important to rely on a similarity or dis-
similarity measure. Commonly used
measures include Euclidean distance (de-
fined as the geometrical distance between
two elements in an n-dimensional space)
and correlation distance. The result of
the hierarchical clustering is therefore a
hierarchical organization of patterns, sim-
ilar to a phylogenetic tree. For example,
in Figure 4b the most similar genes five
and six are first merged to form a cluster,
then genes one and two form a different
cluster which is lengthened later on by
adding the next more similar gene three;
and the process continues until all genes
have been included in a cluster and all
clusters have been merged. For large-
scale microarray data, it is common to
use a simultaneous hierarchical clustering
for samples and genes (32). Typically,
genes are represented in the y-axis,
whereas samples are drawn in the x-axis.
A color-coded matrix (heatmap), where
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Figure 5. Selection Procedure for Genes Associated with Survival Times as Risk Factors. A
positive gene (left plot) is that whose expression included as a risk factor in a survival
model (Cox, exponential, poison, etc.) can be fitted reasonably well (dotted line) to the
original survival tfimes (steep solid line). The predicted survival curve from a neyative yene
(doftted line in right plot) is not close to the observed survival curve (steep solid line).

samples and genes are sorted according
to the results of the clustering, is used to
represent the expression values for each
gene in each sample. This two-dimen-
sional clustering procedure is particularly
suitable to explore the results of a large
microarray experiment (see Figure 4).

Identification of Prognostic Genes
Associated with Risk and Survival

In medicine, the association of prog-
nostic factors with survival times is in-
valuable. The link between gene expres-
sion levels and survival times may
provide a useful tool for early diagnosis,
prompt therapeutic intervention, and
designing patient-specific treatments.
Consequently, the selection of biomark-
ers that correlate with survival times is
a very important objective in the analysis
of microarray data. To date, a number of
approaches have been developed. The
most commonly used procedures incor-
porate genes into exponential, poison, or
Cox regression models using a univariate
variable selection procedure (35). The
gene selection procedure is summarized
in Figure 5. The selected genes combined

in clinical classes can then be used to de-
tect variations in survival times using
both the Kaplan-Meier method and sta-
tistical tests. Often, researchers are inter-
ested in finding subgroups of samples
independently of the recorded clinical
data whose survival times are signifi-
cantly different. This information can
then be used to prescribe specific treat-
ments. In previous sections, we have
shown how unsupervised data explo-
ration methods such as cluster analysis
can be used to identify sub-groups of
samples within what was previously
considered an homogeneous disease.
Once these sub-groups have been identi-
fied, survival analysis can be used to
test whether they are characterized by
different clinical outcomes (35).

Association of Genes with Disease
Surrogate Markers: Regression Analysis
An interesting question in the analysis
of microarray data derived from clinical
studies is whether there is an association
between gene expression and an ordinal
variable that represent a response, or
more generally, a measure of disease

progression — a surrogate marker. Exam-
ples of these variables are the concentra-
tion of metabolites, proteins in serum,
response to treatment or dosage, growth,
or any other clinical measure whose nu-
merical representation makes sense pro-
gressively. The approach, depicted in
Figure 6, is conceptually similar to that
introduced in the Survival Analysis sec-
tion of this review. The mathematical
model in the cases that relate the inde-
pendent variable, such as time, levels of
metabolites, protein, or treatment, to de-
pendent variables (genes) is, commonly,
a linear regression model. Nevertheless,
such a model can be modified to include
other available information.

Genetic Disorders: Gene Copy
Number and Comparative Genomic
Hybridization

It is well known that several inherited
diseases are a consequence of genetic re-
arrangements such as gene duplications,
translocations, and deletions. Moreover,
these alterations are observed in cancer
cells as well. A specific microarray tech-
nique used to detect these abnormalities
in a single hybridization experiment is
called Comparative Genomic Hybridiza-
tion (CGH) (Pollack, 1999) (13). The core
concept in CGH is the use of genomic
DNA (gDNA) in the hybridization to
compare the gDNA from a disease sam-
ple versus that of a healthy individual.
Hence, a typical microarray design can
be used in this approach (see Figure 1).
The signal intensity in all probes in the
microarray should, therefore, be very
similar for healthy samples. Thus, differ-
ences in gene copy number are easily
detected by changes in signal intensity.
Using this technology, Zhao et al., (2005)
(36) recently have characterized the vari-
ations of gene copy number in several
cell lines derived from prostate cancer
and Braude et al., (36) confirmed an al-
teration in chronic myeloid leukemia.

Genetic Disorders: Epigenetics and
Methylation

Around 80 percent of CpG-dinucleotides
are naturally methylated at the fifth posi-
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Figure 6. Selection Procedure for Genes Associated with Outcome. The expression of a
positive gene (horizontal axis in left plot) is highly correlated with the associated outcome
(vertical axis). For a non-associated gyene (right plot), the yene expression (horizontal axis)

is not correlated to outcome (vertical axis).

tion of the cytosine pyrimidine ring (37).
The patterns of cytosine methylation
along with histone acetylation and phos-
phorylation control the activation and
deactivation of genes without changing
the nucleotide sequence (38). These regu-
latory mechanisms are known as the epi-
genetic phenomena. In particular, genes
methylated in their promoters become
inactive irrespective of the presence of
the transcriptional activators. Aberra-
tions in any of these epigenetic patterns
cause several syndromes and may pre-
dispose carriers to cancer (39). To detect
patterns of methylation using microar-
rays, two main methods have been pro-
posed (40). One is based on the enrich-
ment of the unmethylated fraction of
CpG islands and the other focuses on the
hypermethylated fraction. Both methods
make use of methylation-sensitive re-
striction enzymes to generate fragments
enriched in either unmethylated or
methylated CpG sites (Figure 7). In the
first method, sample and control gDNA
are cleaved with methylation-sensitive
enzymes that cut unmethylated CpG
sites generating protruding shorter frag-
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ments leaving methylated CpG sites un-
altered. Specific adaptors then are linked
to these protruding ends. Methylated
fragments subsequently are cut by a CpG
specific enzyme. The remaining frag-
ments that contain the adaptor, those
that were originally unmethylated, are
amplified using PCR and primers com-
plementary to the adaptors’ sequence.
The result is that genes belonging to the
unmethylated fraction are associated
with higher fluorescent intensities on
the microarray. On the other hand, in the
second method, the gDNA from the sam-
ple and control samples are cleaved with
a restriction enzyme to generate small
protruding fragments. Fragments then are
linked to adaptors and cut by methylation-
sensitive restriction enzymes leaving
methylated flanked fragments unaltered
which are amplified using PCR. The re-
sult is that the methylated fraction is
amplified and detected in the microarray.
The microarrays used in these experi-
ments are, therefore, specially designed
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Figure 7. Detection of Altered Methylated Patterns and DNA Polymorphisms in Genomic DNA.
Left Panel: Enrichment of unmethylated DNA fragments (see text). Right Panel: Enrichment of
hypermethylated fragments (see text). Scheme adapted from Schumacher et al. (2006) (41).
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to include such fragments. Using the
methods described, methylation patterns
have been screened for several types of
cancers (41-46).

Genetic Disorders and Variability:
Gene Polymorphism and Single
Nucleotide Polymorphism

The human genome carries at least ten
million nucleotide positions that vary in
at least one of 100 individuals in a popu-
lation (47). The identification of these
single nucleotide polymorphisms (SNPs)
is an important tool for identifying ge-
netic loci linked to complex disorders
(47). Although there are commercially
available microarrays to detect SNP, these
technologies still are in their infancy and
the widespread distribution is still halt
because of the relatively high cost per
sample. So far, the number of SNPs
stored in public databases is more than

two million whereas the available mi-
croarrays for SNPs detection only cover
10,000 SNPs. The three major strategies
for SNP genotyping using microarrays
are all based on primer extension tech-
niques depicted in Figure 8. The primer
included in the microarray probe hy-
bridizes to the target sequence precisely
adjacent to its SNP. The first strategy (see
Figure 8A) consists of mini-sequencing
the primer specific for each polymor-
phism immobilized in the microarray
support. PCR products, DNA poly-
merase, and different color fluorescent-la-
beled nucleotides are added in the hy-
bridization-one-base-extension to detect
the SNPs in parallel. The genotype is de-
tected by color combinations. The second
strategy (see Figure 8B) uses the same
concept of primer-specific hybridization,
though combined with only one dye and
more than one base extension. The geno-

type is revealed by signal strength. The
third strategy (see Figure 8C) makes one-
base extension in solution combined with
different color fluorescent-labeled nu-
cleotides. Primers then are captured by
hybridization in the microarray. The
genotype is detected by color combina-
tions. Recent studies have produced ge-
nome-wide SNP characterization for a
number of tumor types (48-50).

Chromatin Immunoprecipitation:
Genetic Control and Transcriptional
Regulation

Transcription factors (TF) are regula-
tory proteins that can bind specific DNA
sequences (usually promoters) to control
the level of gene expression. Mutations
or alterations in the expression or activa-
tion of TF are known in several diseases
(51). For example, abnormal over-expres-
sion of the TF c-Myc is found in 90 per-
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cent of gynecological cancers, 80 percent
of breast cancers, 70 percent of colon can-
cers, and 50 percent of hepatocarcinomas
(52). Therefore, establishing the link be-
tween TF and their targets is essential to
characterize and design better cancer
therapies. To identify these targets, DNA
fragments are incubated with a selected
TF that has been tagged (Figure 9). The
complex DNA-TF is precipitated using
a quite specific antibody against the
tagged peptide. Precipitated DNA then
is labeled and hybridized in DNA mi-
croarrays to reveal genome-wide targets
for the selected TF (see Figure 9). An ex-
perimental overview and computational
methods for the analysis of these data
have been revised elsewhere (53,54).

Pathogen Detection

Classically, pathogen detection is
achieved through a series of clinical tests
which detect, generally, single pathogens.
A battery of clinical assays is therefore
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Figure 10. Multi-Pathogen Detection Using DNA Microarrays. Specific DNA sequences from
disease-causing micro-organisms can be spotted on a microarray for pathogen detection.

performed to typify a sample. A radical
recent approach uses DNA microarrays
to test for the presence of hundreds of
pathogens in a single experiment (15,16).
For this, known sequences from each
pathogen are collected and those being
pathogen-specific are selected (Figure 10).
The collection of specific sequences is
used to build a purpose-specific microar-
ray. Then genomic DNA from a patient
biopsy, or from a food sample suspected
to be infected, is extracted and hybridized
to the microarray. Pathogen detection is
simply revealed by spot intensity.

AN OVERVIEW OF A TYPICAL
MICROARRAY EXPERIMENT

In this section we provide a brief de-
scription of the typical workflow of a
microarray experiment and its data
analysis (see Figure 1).

RNA Extraction

RNA can be extracted from tissue or
cultured cells using molecular biology lab-
oratory procedures (although several com-
mercial kits are available). The amount of
mRNA required is about 0.5/u/g which
is equivalent to 20/u/g of total RNA,
though there is some variation depend-
ing on the microarray technology. When
the amount of mRNA (or DNA) is scarce,
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an amplification step, for example by
PCR amplification of reverse transcribed
cDNA, is needed before labeling.

Labeling

mRNA is retro-transcribed using re-
verse transcriptase to generate cDNA.
Labeling is achieved by including in the
reaction (or in a separate reaction) modi-
fied fluorescent nucleotides that are
made fluorescent by excitation at appro-
priate wavelengths. The most common
fluorescent dyes used are Cy3 (green)
and Cy5 (red). The unincorporated dyes
usually are removed by column chro-
matography or ethanol precipitation.

Hybridization

Hybridization is carried out according
to conventional protocols. Hybridization
solution contains saline sodium citrate
(SSC), sodium dodecyl sulphate (SDS)
as detergent, non-specific DNA such as
yeast DNA, salmon sperm DNA, or
repetitive sequences, blocking reagents
like bovine serum albumin (BSA) or
Denhardt’s reagent, and labeled cDNA
from the samples. Hybridization tem-
peratures range from 42°C to 45°C for
cDNA-based microarrays and from 42°C
to 50°C for oligo-based microarrays.
Hybridization volumes vary between
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20/u/L to 1 mL depending on the mi-
croarray technology. A hybridization
chamber is usually needed to keep
temperature and humidity constant.

Scanning

After hybridization, the microarray is
washed in salt buffers of decreasing con-
centration and dried by slide centrifuga-
tion or by blowing air after immersion in
alcohol. Then the slide is read by a scan-
ner which consists of a device similar to
a fluorescence microscope coupled with
a laser, robotics, and digital camera to
record the fluorescent excitation. The ro-
botics focuses on the slide, lens, camera,
and laser by rows similar to a common
desktop scanner. The amount of signal
(color) detected is presumed to be pro-
portional to the amount of dye at each
spot in the microarray and hence propor-
tional to the RNA concentration of the
complementary sequence in the sample.
The output is, for each fluorescent dye,
a monochromatic (non-colored) digital
image file typically in TIFF format. False-
color images (red, green, and yellow) are
reconstructed by specialized software for
visualization purposes only.

Image Analysis

The goal in this step is to identify the
spots in the microarray image, quantify
the signal, and record the quality of each
spot. Depending on the software used,
this step may need some degree of
human intervention. The digital images
are loaded in specialized software with
a pre-loaded design of the microarray
(grid layout) which instructs the soft-
ware to consider number, position,
shape, and dimension of each spot. The
grid is then accommodated to the actual
image automatically or manually. Fine-
tuning of spot positions and shapes is
usually performed to avoid any bias in
the robotic construction of the microar-
ray. Human involvement is needed to
mark those spots that could be artifacts
such as bubbles or scratches which are
common. Finally, an automated integra-
tion function is performed using the soft-
ware to convert the actual spot readings

to a numerical value. The integration
function considers the signal and back-
ground noise for each spot. The output
of the image analysis may be commonly
a tab-delimited text file or a specific file
format. Common image analysis soft-
ware include ScanArray (PerkinElmer,
Waltham, MA, USA), GenePix (Axon),
(Molecular Devices Corporation, Union
City, CA, USA) TIGR-SpotFinder/TM4
(www.tigr.org), (The Institute for Ge-
nomic Research, Rockville, MD, USA)
and GeneChip (Affymetrix, Santa Clara,
CA, USA). This process varies from auto-
matic or semi-automatic to manual de-
pending on the microarray technology,
scanner, and software used.

Normalization

Systematic errors are introduced in la-
beling, hybridization, and scanning pro-
cedures. The main aims of normalization
is to correct for these errors preserving
the biological information and to gener-
ate values that can be compared between
experiments, especially when they were
generated in, and with, different times,
places, reagents, microarrays, or techni-
cians. There are two types of normaliza-
tion, “within” and “between” array nor-
malization. “Within” array normalization
refers to normalization applied in the
same slide and it is applicable, generally,
to two-dye technologies. For this, let us
define M = Log,(R/G) and A = Log,(R*G)
/2 where R and G are the red and green
readings respectively. Under the assump-
tion that the majority of genes have not
been differentially expressed, the major-
ity of the M values should oscillate
around zero. “Within” normalization is
finally performed shifting the imaginary
line produced by the values of M (in ver-
tical axis) to zero along the values of A (in
horizontal axis). This kind of normaliza-
tion, sometimes called loess, usually is
performed by spatial blocks to avoid any
bias in the microarray printing process
(called print-tip-loess). “Between” nor-
malization is necessary when at least two
slides are analyzed to guarantee that both
slides are measured in the same scale
and that its values are independent from

the parameters used to generate the
measurements. The goal is to transform
the data in such a way that all microar-
rays have the same distribution of values.
For two-dye technologies this is optional
and is commonly done through scaling
or standardizing the values once within
normalization has been performed. For
one-dye microarrays, between normaliza-
tion is usually performed using methods
to equalize distributions such as quantile-
normalization (55) after log, transforma-
tion. There are, however, a number of
normalization methods. The right choice
is usually data-dependent. A compari-
son of the results of different normaliza-
tion methods is recommended.

Missing Values

The image analysis process (generally
in spotted microarrays) does not always
generate a value for a gene because the
spot was defective or manually marked
as faulty. This is not a major issue when
genes are replicated in several spots in
the microarray, because the reading of
the gene still can be estimated using the
remaining spots. If the value in a spot is
systematically missing in several arrays,
it should be removed from the analysis.
If the number of missing values is low,
the corresponding spots can simply not
be considered in all arrays. However,
when the number of arrays is large, this
could lead to the removal of several
spots. To avoid these problems, one must
use only those methods that can deal
with missing values, or, use algorithms
to infer those values (30). Results should,
therefore, be interpreted considering that
some values were inferred.

Filtering

Current microarrays contain more than
10,000 genes, spots, or probes. Dealing
with large amounts of data may require
expensive computational resources and
large processing times. A common prac-
tice is to remove genes that have not
shown significant changes across samples,
genes with several missing data, or those
whose average expression is very low
(because low expressed genes are more
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susceptible to noise). The most common
approaches use statistical tests (lower),
signal-to-noise estimations (higher), vari-
ability (higher), and average (higher).

Transformation

The numerical values from image
analysis are commonly integer numbers
between one and 32,000 for both signal
and background. The background nor-
mally is subtracted from the signal. The
distribution of these values is, however,
concentrated in a narrow range and,
therefore, is transformed using loga-
rithms (base 2 generally) which generate
normal-like distributions. Negative val-
ues resulting from subtraction may raise
problems in transformations which are
resolved by restricting the values or per-
forming more robust transformations
such as the generalized logarithm.

Statistical Analysis

The procedure after image analysis
and data processing depends mainly on
the particular biological issue and data
available. These procedures have been
described in the Applications Section of
this review.

ILLUSTRATING THE DETECTION OF
DIFFERENTIALLY EXPRESSED GENES:
THE CASE OF TERM PLACENTA

In previous sections, we have intro-
duced the experimental and data analy-
sis methods used in common microar-
ray experiments. To illustrate these
procedures, we will use a case study
designed to identify genes that are pref-
erentially expressed in placenta. This
study, currently ongoing in our labora-
tory, is part of a larger project whose re-
sults are expected to assist further re-
search revealing molecular mechanisms
involved in fetus development, placen-
tal function, and pathologies related to
pregnancy. To identify genes specific for
human placenta, we used a two-color
microarray. In this experiment, mRNA
extracted from two normal human pla-
centas was compared with a pool of
mRNA extracted from several normal
tissues not including placenta. To gain
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cept placenta, in search of placental specific transcripfts.

information on the variability expected
from experimental errors, we also com-
pared two aliquots of the reference
mRNA in the same array. An overview
of the process is depicted in Figure 11.
A brief description of the detailed pro-
cedure follows.

Step 1: mRNA Exiraction and
Microarray Hybridization

Human total term placenta RNA iso-
lated using proteinase K-phenol based
protocol (described in (56)) and a pool of
commercially available total RNAs from
several human tissues not including pla-
centa were part of the set of reagents uti-
lized in the EMBO-INER Advanced Prac-
tical Course 2005 held in Mexico city
(EMBO Courses and Workshops Pro-
gramme, Heidelberg Germany, http://
www.embo.org/courses_workshops/mex
ico.html). They were quality controlled by
running them in a RNA 6000 Nano Assay
from Agilent (Agilent Technologies Inc.,
Santa Clara, CA, USA). First strand cDNA
was synthesized from each RNA (5 ug)
sample by reverse transcription using an
oligo-dT primer with a T7-promoter se-
quence attached to its 5" end, while s

strand resulted from treating the first
strands with RNase H plus DNA poly-
merase I (Message Amp aRNA kit from
Ambion, Austin, TX, USA). Column puri-
fied double-stranded cDNAs were tran-
scribed (in vitro transcription) with T7
RNA polymerase and the amplified RNAs
(aRNAs) were purified also by column
binding and subsequent elution. Fluores-
cent labels were attached indirectly to the
hybridization probes by a two-step proce-
dure. The first step consisted of a reverse
transcription of the aRNA using this time
a mixture of all four desoxiribonu-
cleotides and including aminoallyl-dUTP.
In the second step, N-hydroxysuccin-
imide-activated fluorescent dyes (Cy3 and
Cyb) were coupled to the cDNAs by reac-
tion with the amino functional groups.
Probes were preincubated with blocking
reagents (human Cot DNA at 1 ug/mL
and poly-dA DNA also at ug/mL) and
then hybridized to prehybridized (6X
SSC, 0.5 percent SDS and one percent
BSA) slides in hybridization buffer (50
percent formamide, 6X SCC, 0.5 percent
SDS and 5X Denhardt’s solution). Slides
were washed once in 2X SSC/0.1 percent
SDS at 65°C for five minutes, twice in
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Figure 12. Quality Assessment and Normalization. (A) Ratio values (M = Log2(R/G), R =
Red channel, G = Green channel) versus average values (A = Loy2(RxG)/2) for one pla-
centa sample. Dots represent spots in the microarray. Crosses correspond to control
spofts. Lines represent the tendency for each block (print-tip) in the microarray. (B) Con-
trol assay, two reference mRNA aliquots were hybridized changing the dye color only.
Symbols as in (A). (C) Normalized data from (A). (D) Normalized data from (B). Control

spots removed in (C) and (D).

0.1X SSC/0.1 percent SDS but first at
65°C for ten minutes, and then at room
temperature for two minutes, and finally
in isopropanol, also at room temperature,
with slide centrifugation between each
washing step, and stored in the dark until
scanning. Fluorescent probes were hy-
bridized to cDNA microarrays (laboratory
made oligo-based microarray containing
half of the probes in each of two slides).

Step 2: Microarray Scanning, Spot
Finding and Image Processing
Microarrays were scanned using Sca-
nArray Express (PerkinElmer, Waltham,
MA, USA). Images obtained were ana-
lyzed using ChipSkipper (EMBLEM
Technology Transfer GmbH, Heidelberg,
Germany, http:/ /www.embl-em.de) to
obtain a single value for each spot repre-
senting the ratio (in log, scale) of the
mRNA expression level from placenta to

the reference mRNA from the pool of
non-placenta tissues. A value of zero
represents similar expression level in
both mRNA samples. A value of one rep-
resents two-fold over-expression in pla-
centa whereas a value of -1 represents
two-fold downregulation in placenta.
One placental sample was hybridized in
duplicate into the two microarrays using
a dye-swap design. In this approach the
labeling scheme is reversed in two sepa-
rate microarrays. To gain information on
the variability associated with experi-
mental error, two aliquots of the refer-
ence pool mRNA were compared on the
same microarray. Likewise the compari-
son between experimental and control
samples and the comparison between
the two control samples were performed
in duplicate using the dye-swap design.
To summarize, the experiment was per-
formed using six microarrays (two pla-

centa samples compared with a reference
in duplicate and two reference mRNA as
controls, see Figure 11).

Step 3: Quality Assessment,
Processing and Normalization

To ensure that all microarrays were
comparable in scale, we performed
print-tip loess normalization, shifting
the imaginary M line to zero (Figure 12).
We processed the dataset, removing
from the analysis all control and empty
spots. Representative plots before and
after “within” normalization and pro-
cessing for both placenta and control
experiments are shown in Figure 12.
Note that, as expected, there are impor-
tant differences in ratio values (see M
value in Figure 12C-D) for highly ex-
pressed genes (A value) in placenta
compared with the reference (see Figure
12C), whereas ratios in the control ex-
periment are very close to zero (see
Figure 12D) indicating a very high re-
producibility of the technology.

Step 4: Detection of Differential
Expressed Genes

Duplicated spots were averaged to
generate a unique measure per gene per
array. To detect differentially expressed
genes, we used a one-sample t-test
under the null hypothesis of no differ-
ential expression (mean ratio equal
zero). Resulted P-values were adjusted
for multiplicity tests using the False
Discovery Rate (FDR) approach (18,57).
Because of the small number of sam-
ples, we treated the replicated biologi-
cal samples as independent for prelimi-
nary purposes only. The effect of this
exercise is a slight underestimation of
the variance in favor of more sensible
results. We treated the replicated bio-
logical samples as independent to in-
crease the level of confidence in the
statistical tests. In addition, we limited
the selection of differentially expressed
genes to those that fulfill two condi-
tions: firstly, genes whose FDR value
is less than 0.10 (ten percent corre-
sponding to raw P-values less than
0.0000118), and secondly, genes whose
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Figure 13. Genes differentially expressed in placenta compared with other tissues. (A)
Heatmap showing the relative gene expression in placenta. Darker color means higher
expression in placenta. Genes are ordered using a hierarchical clustering algorithm. (B)
Heatmap showing the score in T1dbase corresponding to genes in (A). Darker colors rep-

resent more specific expression.

absolute fold expression is at least two.
Using these criteria, 350 (out of 21,456)
were selected. A subset of 205 genes is

depicted in Figure 13 (see step 5).

Step 5: Validation

To verify the process of selection, we
made two comparisons. First, as negative
control, we followed the same selection
criteria for the control microarrays that
made use of the reference sample in both
channels. The result was that no genes
match the criteria. Second, we performed
a comparison using the Tissue Expression
tool (http:/ /www.tldbase.org/page/Tissue
Home) from T1dbase (59). This tool makes
use of Gene Expression Atlas (59),
SAGEmap (60), and Tissuelnfo (58), inte-
grating all measurements in a single score
(58). This score, estimated for several tis-
sues, represents whether the expression
for a gene is tissue-specific. Scores closer to
one are meant to be tissue-specific whereas
scores closer to zero represents no-tissue-
specificity. From the 350 genes resulted in
Step 4, we selected only those that are in-
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cluded in this database. The result was 201
genes. Several genes that seem to be over-
expressed in the placentas processed here
(darker colors in Figure 13A) shows con-
sistently higher placenta-specific scores in
Tldbase (darker colors in Figure 13B).
These results suggest that the experiment
is coherent and valid.

Step 6: Analysis

Once genes have been selected, further
computational, literature, and laboratory
analyses are needed to confirm, expand,
or restrain the results. Here, the analysis
only dealt with comparing the results
with T1dbase-Tissue Specific Expression
Tool. However, queries to Gene Ontol-
ogy, KEEG pathways, Pubmed, Blasts,
or any other pertinent database resource
should be considered a compulsory step.

CONCLUSIONS AND TRENDS

DNA microarrays are a powerful, ma-
ture, versatile, and easy-to-use genomic
tool that can be applied for biomedical
and clinical research. The research com-
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munity is expanding the use of this ap-
proach for novel applications. The main
advantage is the genomic-wide informa-
tion provided at reasonable costs. Biologi-
cal interpretation however requires the in-
tegration of several sources of information.
In this context, a new discipline referred
as Systems Biology is emerging that inte-
grates biological knowledge, clinical infor-
mation, mathematical models, computer
simulations, biological databases, imaging,
and high-throughput “omic” technologies,
such as microarray experiments. There-
fore, multidisciplinary groups involving
clinicians, biologists, statisticians, and, re-
cently, bioinformaticians are being formed
and expanded in all important research
institutions. Subsequently, virtually all
biology-related research areas are moving
from merely describing cellular and mo-
lecular components in a qualitative man-
ner, toward a more quantitative approach.
These new teams are generating huge
amounts of data and more convincing
models to ultimately reveal hidden pieces
in the biological puzzle. This new knowl-
edge is having a crucial impact on the
treatment of diseases, because, among
other things, it individualizes subtypes
of pathologies, disease risks, and survival,
treatment, prognosis, and outcome,
quickly moving biomedical research to
the era of personalized medicine.

All supplementary materials are avail-
able online at molmed.org.
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