
3 8 0 |  G A L A S S O  A N D  D Y C K  |  M O L  M E D  1 3 ( 7 - 8 ) 3 8 0 - 3 8 7 ,  J U L Y - A U G U S T  2 0 0 7

Worldwide, stroke is a leading cause of
long-term disability and the most com-
mon life-threatening neurological disor-
der (1). While stroke is a heterogeneous
condition that encompasses a variety of
etiologies, most strokes result from the
obstruction of an intra-cranial artery by a
thrombus (2). To date, thrombolytic inter-
ventions, which aim to lyse clots and re-
store blood flow to compromised brain
regions, represent the only effective treat-
ment for ischemic strokes. Nevertheless,
administration of tissue plasminogen ac-
tivator (tPA), the only approved throm-
bolytic agent, is constrained by its lim-
ited therapeutic window of three hours
and by complications derived from hem-
orrhagic risks, reperfusion injury, and its
own intrinsic toxicity (3). Furthermore,
the potential for neuroprotective thera-
pies, which aim to antagonize glutamate-
induced excitotoxicity or neuronal death
mediated by calcium dyshomeostasis,
have met with limited clinical success
(4). However, effective and alternative
therapeutic interventions may be un-
veiled from a more comprehensive un-
derstanding of the biochemical changes

mediating ischemic brain injury. As such,
calcium may not be the only divalent
metal cation involved in ischemia.
Rather, recent evidence suggests that cal-
cium may serve as an accomplice to zinc,
a possibly more potent ionic mediator of
ischemic injury (5–8). While zinc and cal-
cium may rely upon common pathways
to penetrate and injure cells, recent data
also suggests that toxic elevations in in-
tracellular calcium levels, may in part or
in its entirety, be induced by zinc (7,8).

Nearly two decades ago, zinc was first
implicated in the pathogenesis of ische-
mia and more than twenty additional in
vivo studies have since examined the
role of zinc during both global and focal
experimental paradigms. Some of these
studies are summarized in Table 1 and
are discussed below. From these studies,
zinc has been reported to possess both
neurotoxic and neuroprotective capabili-
ties during experimentally-induced is-
chemia. However, as can be seen in
Table 1, few of the findings from these
studies are directly comparable, largely
owing to considerable diversity in study
design, such as variations in models and

duration of ischemia, species and strain,
and dosage, route, and regimen of either
zinc chelators or zinc supplements.

NEUROTOXICITY OF ZINC IN ISCHEMIA
Tonder and colleagues (9) conducted

the first study providing indirect evi-
dence for the toxic translocation of zinc
from presynaptic neurons into selective
postsynaptic neurons during the experi-
mental paradigm of global ischemia.
TSQ (N-[6-methoxy-8-quinolyl]-P-
toluenesulfonamide) and acid fuschin
staining were used in conjunction to
compare changes in zinc staining with
the occurrence of degenerating or aci-
dophilic cells between 2 and 24 h post-
ischemia. Although degeneration of the
cornu ammonis 1 (CA1) subfield was not
observed due to the acute survival pe-
riod of this study, the distribution of
TSQ-cell stained bodies of CA4, which
were observed as soon as 2 h post-
ischemia, corresponded with the distri-
bution of degenerating neurons observed
beginning at 18 h post-ischemia. The
concomitant decrease in TSQ fluores-
cence of the mossy fiber terminals and
the intracellular accumulation in the CA4
neurons strongly implicated the toxic
translocation of zinc.

Johansen and colleagues (10), as a
follow-up to the original study con-
ducted by Tonder and others (9) found
that intra-ischemic hypothermia (29°C)

The Role of Zinc in Cerebral Ischemia

Sherri L Galasso1,3 and Richard H Dyck1,2,3

1Department of Psychology, 2Department of Cell Biology and Anatomy, 3Hotchkiss Brain Institute, University of Calgary, Calgary, 
Alberta, Canada

Address correspondence and reprint requests to Richard H Dyck, Department of Psychol-
ogy, University of Calgary, 2500 University Drive N.W. Calgary, Alberta T2N 1N4. Phone:
403-220-4206; Fax: 403-282-8249; Email: rdyck@ucalgary.ca
Submitted April 23, 2007; Accepted for publication April 25, 2007.

Ischemic stroke is one of the most pervasive life-threatening neurological conditions for which there currently exists limited ther-
apeutic intervention beyond prevention. As calcium-focused neuroprotective strategies have met with limited clinical success, it
is imperative that alternative therapeutic targets be considered in the attempt to antagonize ischemic-mediated injury. As such,
zinc, which is able to function both as a signaling mediator and neurotoxin, has been implicated in cerebral ischemia. While zinc
was first purported to have a role in cerebral ischemia nearly twenty years ago, our understanding of how zinc mediates ische-
mic injury is still in its relative infancy. Within this review, we examine some of the studies by which zinc has exerted either neuro-
protective or neurotoxic effects during global and focal cerebral ischemia.
Online address: http://www.molmed.org
doi: 10.2119/2007–00044.Galasso



P R O C E E D I N G S

M O L  M E D  1 3 ( 7 - 8 ) 3 8 0 - 3 8 7 ,  J U L Y - A U G U S T  2 0 0 7  |  G A L A S S O  A N D  D Y C K  |  3 8 1

Ta
bl

e 
1.

O
ve

rv
ie

w
 o

f i
n 

vi
vo

 S
tu

d
ie

s 
In

ve
st

ig
a

tin
g

 th
e

 R
o

le
 o

f Z
in

c
 d

ur
in

g
 C

e
re

b
ra

l I
sc

he
m

ia

Sp
e

c
ie

s/
M

o
d

e
l

Th
e

ra
p

e
ut

ic
 In

te
rv

e
nt

io
n

A
ss

e
ss

m
e

nt
 M

e
th

o
d

s/
M

a
in

 F
in

d
in

g
(s

)
RE

FE
RE

N
C

E

Ra
t/

G
lo

b
a

l i
sc

he
m

ia
; 4

-V
O

a
–

TS
Q

b
&

 a
c

id
 fu

sc
hi

n 
st

a
in

in
g

 b
e

tw
e

e
n 

2 
a

nd
 2

4 
h 

p
o

st
-is

c
he

m
ia

/A
t 2

 h
: 

(9
)

(2
0 

m
in

 o
c

c
lu

sio
n)

.
TS

Q
-s

ta
in

e
d

 s
o

m
a

ta
 in

 C
A

4,
 d

im
in

ish
e

d
 T

SQ
-s

ig
na

l i
n 

m
o

ss
y 

fib
e

rs
; 

a
t 1

8 
h:

 T
SQ

-s
ta

in
e

d
 c

e
lls

 c
o

rre
sp

o
nd

e
d

 to
 a

c
id

o
p

hi
lic

 c
e

lls
.

Ra
t/

Fo
c

a
l i

sc
he

m
ia

; t
M

C
A

O
c

Zn
PP

d
(1

-1
0 
µg

);
 to

p
ic

a
l a

p
p

lic
a

tio
n.

Br
a

in
 e

d
e

m
a

 (
w

e
t/

d
ry

 w
e

ig
ht

 m
e

th
o

d
) 

a
ss

e
ss

e
d

 a
t 2

4 
h 

(2
4)

(6
0 

m
in

 o
c

c
lu

sio
n)

.
p

o
st

-is
c

he
m

ia
/M

o
d

e
st

 b
ut

 s
ig

ni
fic

a
nt

 re
d

uc
tio

n 
in

 b
ra

in
 e

d
e

m
a

 w
ith

Zn
PP

 tr
e

a
tm

e
nt

.
Ra

t/
G

lo
b

a
l i

sc
he

m
ia

; 4
-V

O
 

Pr
e

-t
xe

&
 in

tr
a

-t
xf

hy
p

o
th

e
rm

ia
 (

29
°C

)
TS

Q
 s

ta
in

in
g

 2
 h

 to
 7

 d
a

ys
 p

o
st

-is
c

he
m

ia
/I

sc
he

m
ia

 a
t 3

7°
C

: T
SQ

-s
ta

in
e

d
 

(1
0)

(2
0 

m
in

 o
c

c
lu

sio
n)

.
st

a
rt

e
d

 1
h 

p
rio

r a
nd

 m
a

in
ta

in
e

d
 fo

r 
C

A
3 

ne
ur

o
na

l b
o

d
ie

s 
p

re
se

nt
 a

t 2
 to

 2
4 

h;
 is

c
he

m
ia

 a
t 2

9°
C

: 
isc

he
m

ia
.

TS
Q

-s
ta

in
e

d
 c

e
ll 

b
o

d
ie

s 
a

b
se

nt
.

Ra
t/

Fo
c

a
l i

sc
he

m
ia

; p
M

C
A

O
g

Zn
PP

 (
50

 m
g

/k
g

) 
i.p

., 
p

re
-t

x:
 3

0 
m

in
 

In
fa

rc
t v

o
lu

m
e

 &
 b

ra
in

 e
d

e
m

a
 a

ss
e

ss
e

d
 2

4 
h 

p
o

st
-is

c
he

m
ia

/Z
nP

P 
p

re
-t

x 
(2

6)
o

r t
M

C
A

O
 (

2 
h 

o
c

c
lu

sio
n)

.
(p

M
C

A
O

 &
 tM

C
A

O
);

 p
o

st
-t

xh : 2
 o

r 4
 h

in
 p

M
C

A
O

: n
o

 e
ffe

c
t; 

Zn
PP

 p
o

st
-t

x 
in

 tM
C

A
O

: n
o

 e
ffe

c
t; 

Zn
PP

 p
re

-t
x 

in
 

(t
M

C
A

O
).

tM
C

A
O

: d
ra

m
a

tic
 n

e
ur

o
p

ro
te

c
tiv

e
 e

ffe
c

t r
e

d
uc

in
g

 in
fa

rc
t v

o
lu

m
e

 &
 

b
ra

in
 e

d
e

m
a

.
Ra

t/
G

lo
b

a
l i

sc
he

m
ia

; 2
-V

O
i

C
a

-E
D

TA
 3

00
 m

M
 (

5 
µL

; i
.c

.v
.)

, p
re

-t
x:

 
TS

Q
 &

 a
c

id
 fu

sc
hi

n 
st

a
in

in
g

 7
2 

h 
p

o
st

-is
c

he
m

ia
/Z

nj a
c

c
um

ul
a

tio
n 

le
a

d
s 

to
(1

1)
(1

5 
m

in
 o

c
c

lu
sio

n)
.

30
 m

in
.

d
e

g
e

ne
ra

tio
n;

 C
a

-E
D

TA
 re

d
uc

e
d

 Z
n 

a
c

c
um

ul
a

tio
n 

&
 d

e
g

e
ne

ra
tio

n 
o

f C
A

1 
ne

ur
o

ns
.

Ra
t/

Fo
c

a
l i

sc
he

m
ia

; t
M

C
A

O
 

Zn
C

l 2k
(1

0 
m

g
/k

g
; i

.p
.)

, P
Pl (4

8.
5 

m
g

/k
g

; 
In

fa
rc

t v
o

lu
m

e
 &

 b
ra

in
 e

d
e

m
a

 a
ss

e
ss

e
d

 2
4 

h 
p

o
st

-is
c

he
m

ia
/Z

nC
l 2

(2
7)

(2
 h

 o
c

c
lu

sio
n)

i.p
.)

, Z
nP

P 
(5

0 
m

g
/k

g
; i

.p
.)

, p
re

-t
x:

 
re

d
uc

e
d

 in
fa

rc
t v

o
lu

m
e

 b
ut

 h
a

d
 n

o
 e

ffe
c

t o
n 

b
ra

in
 e

d
e

m
a

; Z
nP

P 
30

 m
in

.
a

nd
 P

P:
 b

o
th

 s
ig

ni
fic

a
nt

ly
 re

d
uc

e
d

 in
fa

rc
t v

o
lu

m
e

 a
nd

 b
ra

in
 e

d
e

m
a

.
G

e
rb

il/
G

lo
b

a
l i

sc
he

m
ia

; 
Zn

C
l 2

(2
0 

m
g

/k
g

; s
.c

),
 p

re
-t

x:
 1

 h
, o

r 4
8 

TU
N

EL
n

a
nd

 H
-E

o
a

t 3
 a

nd
 4

 d
a

ys
, r

e
sp

e
c

tiv
e

ly
/1

 h
 Z

nC
l 2

p
re

-t
x:

 n
o

 e
ffe

c
t;

(2
8)

BC
C

A
O

m
(3

 m
in

 o
c

c
lu

sio
n)

.
a

nd
 2

4 
h.

48
 a

nd
 2

4 
h 

Zn
C

l 2
p

re
-t

x:
 m

o
d

es
t b

ut
 si

g
ni

fic
a

nt
 p

ro
te

ct
io

n 
o

f C
A

1 
re

g
io

n.
G

e
rb

il/
G

lo
b

a
l i

sc
he

m
ia

; 
–

Ex
a

m
in

e
d

 Z
nT

-1
 m

RN
A

 e
xp

re
ss

io
n 

b
e

tw
e

e
n 

12
 h

 to
1 

w
e

e
k 

p
o

st
 

(1
2)

BC
C

A
O

 (
5 

m
in

 o
c

c
lu

sio
n)

.
isc

he
m

ia
/Z

nT
-1

 m
RN

A
 e

xp
re

ss
io

n 
w

a
s 

in
d

uc
e

d
 in

 C
A

1 
ne

ur
o

ns
 

e
xh

ib
iti

ng
 Z

n 
a

c
c

um
ul

a
tio

n.
 W

ith
o

ut
 s

ub
se

q
ue

nt
 Z

nT
-1

 p
ro

te
in

 
e

xp
re

ss
io

n,
 th

e
se

 c
e

lls
 s

ta
rt

e
d

 to
 d

e
g

e
ne

ra
te

 a
t 7

2 
h.

Ra
t/

Fo
c

a
l i

sc
he

m
ia

; p
M

C
A

O
.

–
N

e
o

-T
im

m
 s

ta
in

 to
 s

ho
w

 s
yn

a
p

tic
 Z

n 
le

ve
ls 

fro
m

 7
 m

in
 to

 7
 d

a
ys

 
(3

1)
p

o
st

-is
c

he
m

ia
/D

e
c

re
a

se
 in

 Z
n 

st
a

in
in

g
 a

t 7
 m

in
 a

nd
 c

o
nt

in
ue

d
 

th
ro

ug
ho

ut
 7

 d
a

ys
; a

t 1
 h

, Z
n-

p
o

sit
iv

e
 c

e
ll 

b
o

d
ie

s 
se

e
n.

Ra
t/

G
lo

b
a

l i
sc

he
m

ia
; 2

-V
O

 
C

a
-E

D
TA

 3
00

 m
M

 (
3 
µL

; i
.c

.v
.)

; p
re

-t
x:

 
TF

L-
Zn

p
a

nd
 T

U
N

EL
 s

ta
in

in
g

 2
4,

 4
8,

 a
nd

 7
2 

h 
p

o
st

-is
c

he
m

ia
/C

a
-E

D
TA

 
(1

4)
(1

5 
m

in
 o

c
c

lu
sio

n)
.

30
 m

in
.

m
a

rk
e

d
ly

 re
d

uc
e

d
 Z

n 
a

c
c

um
ul

a
tio

n 
a

nd
 d

e
g

e
ne

ra
tio

n 
o

f C
A

1 
ne

ur
o

ns
 a

t a
ll 

tim
e

 p
o

in
ts

.
Ra

t/
G

lo
b

a
l i

sc
he

m
ia

; 2
-V

O
 

So
d

iu
m

 P
yr

uv
a

te
 (

50
0 

m
g

/k
g

; i
.p

.)
; 

TF
L-

Zn
 &

 T
U

N
EL

 s
ta

in
in

g
 3

, 1
5,

 a
nd

 3
0 

d
a

ys
 p

o
st

-is
c

he
m

ia
/S

o
d

iu
m

 
(1

6)
(1

2 
m

in
 o

c
c

lu
sio

n)
.

p
re

-t
x:

 3
0 

m
in

; p
o

st
-t

x:
 0

8 , 0
.5

, 1
, 2

, 3
 h

.
p

yr
uv

a
te

 a
lm

o
st

 c
o

m
p

le
te

ly
 b

lo
c

ke
d

 n
e

ur
o

na
l i

nj
ur

y 
w

he
n 

g
iv

e
n 

w
ith

in
 1

 h
 o

f i
sc

he
m

ia
.

Ra
t/

Fo
c

a
l i

sc
he

m
ia

; t
M

C
A

O
 

C
a

-E
D

TA
 5

00
 m

M
 (

5 
µL

; i
.c

.v
.)

.; 
p

re
-t

x:
TS

Q
, H

-E
, a

c
id

 fu
sc

hi
n,

 C
M

1-
IH

C
r
st

a
in

in
g

 3
 h

 to
 1

4 
d

a
ys

 p
o

st
-is

c
he

m
ia

/
(1

7)
(3

0 
m

in
 o

c
c

lu
sio

n 
– 

m
ild

 
15

 m
in

 o
r p

o
st

-t
x:

 c
o

nt
in

uo
us

 in
fu

sio
n 

C
a

-E
D

TA
 p

re
-t

x 
re

d
uc

e
d

 in
tr

a
c

e
llu

la
r Z

n 
a

c
c

um
ul

a
tio

n,
 in

fa
rc

t v
o

lu
m

e
, 

isc
he

m
ia

) 
o

r (
60

 m
in

 
fo

r 1
 w

e
e

k 
(1

0-
10

0 
nm

o
le

/h
) 

1 
µL

/h
; 

a
nd

 d
e

g
e

ne
ra

tio
n 

a
t 3

 d
a

ys
 b

ut
 p

ro
te

c
tiv

e
 e

ffe
c

ts
 lo

st
 a

t 1
4 

d
a

ys
 o

r 
o

c
c

lu
sio

n 
– 

se
ve

re
 is

c
he

m
ia

).
i.c

.v
.

if 
in

su
lt 

in
te

ns
ity

 in
c

re
a

se
d

 (
30

 m
in

 o
c

c
lu

sio
n 

to
 6

0 
m

in
 o

c
c

lu
sio

n)
 a

nd
 

if 
C

a
-E

D
TA

 w
a

s 
c

o
nt

in
uo

us
ly

 in
fu

se
d

 fo
r 7

 d
a

ys
.

M
o

us
e

/G
lo

b
a

l i
sc

he
m

ia
; 

H
yp

o
th

e
rm

ia
 (

33
°C

) 
in

iti
a

te
d

 a
t 

TS
Q

 &
 H

-E
 s

ta
in

in
g

 7
2 

h 
p

o
st

-is
c

he
m

ia
/H

yp
o

th
e

rm
ia

 m
a

rk
e

d
ly

 re
d

uc
e

d
 

(1
8)

BC
C

A
O

 (
20

 m
in

 o
c

c
lu

sio
n)

.
o

c
c

lu
sio

n;
 c

o
nt

in
ue

d
 3

5 
m

in
.

Zn
 a

c
c

um
ul

a
tio

n 
a

nd
 d

e
g

e
ne

ra
tio

n 
o

f C
A

1,
 C

A
2,

 a
nd

 C
A

4 
ne

ur
o

ns
.

M
o

us
e

/F
o

c
a

l i
sc

he
m

ia
 

–
In

fa
rc

t v
o

lu
m

e
s 

&
 Z

nS
e

A
M

G
s
a

ss
e

ss
e

d
 3

0 
m

in
 to

 2
4 

h 
p

o
st

-is
c

he
m

ia
/

(3
3)

p
ho

to
th

ro
m

b
o

sis
.

In
fa

rc
t c

o
re

 d
e

vo
id

 o
f Z

n 
b

y 
0.

5 
h 

un
til

 2
4 

h;
 2

0%
 in

c
re

a
se

 in
 Z

n 
in

 
p

e
ri-

in
fa

rc
t r

e
g

io
n 

up
 to

 6
 h

; L
e

sio
ns

 m
a

rk
e

d
ly

 la
rg

e
r a

t l
a

te
r (

12
 a

nd
 

24
 h

) 
th

a
n 

a
t e

a
rli

e
r (

0.
5–

6 
h)

 ti
m

e
s.

C
o

nt
in

ue
d



3 8 2 |  G A L A S S O  A N D  D Y C K  |  M O L  M E D  1 3 ( 7 - 8 ) 3 8 0 - 3 8 7 ,  J U L Y - A U G U S T  2 0 0 7

Z I N C  A N D  C E R E B R A L  I S C H E M I A

Ta
bl

e 
1.

C
o

nt
in

ue
d

Ra
t/

Fo
ca

l is
ch

em
ia

; E
m

b
o

lic
 

Zn
C

l 2
(8

0 
µm

o
l/k

g
; i

.p
.)

; B
ic

uc
ul

lin
e

 
In

fa
rc

t v
o

lu
m

e
 &

 b
ra

in
 e

d
e

m
a

 a
ss

e
ss

e
d

 4
8 

h 
p

o
st

-is
c

he
m

ia
/Z

nC
l 2

(1
9)

M
C

A
O

.
(4

8.
5 
µm

o
l/k

g
; i

.p
.)

 o
r t

he
 a

b
o

ve
 in

 
a

lo
ne

 o
r Z

nC
l 2

a
nd

 B
ic

uc
ul

lin
e

: d
ra

m
a

tic
a

lly
 in

c
re

a
se

d
 in

fa
rc

t v
o

lu
m

e
, 

c
o

m
b

in
a

tio
n;

 p
re

-t
x:

 3
0 

m
in

.
in

c
re

a
se

d
 b

ra
in

 e
d

e
m

a
 a

nd
 w

o
rs

e
ne

d
 n

e
ur

o
lo

g
ic

a
l d

e
fic

its
; 

Bi
c

uc
ul

lin
e

 a
lo

ne
: n

o
 e

ffe
c

t.
G

e
rb

il/
 F

o
c

a
l i

sc
he

m
ia

; r
ig

ht
 

–
M

ic
ro

-d
ia

ly
sis

 c
o

lle
c

te
d

 0
–3

 h
 p

o
st

-is
c

he
m

ia
; a

na
ly

ze
d

 w
ith

 G
F-

A
A

St /Z
n

(3
5)

p
M

C
A

O
.

le
ve

ls 
d

ro
p

p
e

d
 7

5%
 o

f b
a

se
lin

e
 a

nd
 n

e
ve

r r
e

c
o

ve
re

d
 in

 ip
sil

a
te

ra
l 

he
m

isp
he

re
 a

nd
 o

nl
y 

m
in

im
a

lly
 c

ha
ng

e
d

 in
 c

o
nt

ra
la

te
ra

l h
e

m
isp

he
re

.
G

e
rb

il/
G

lo
b

a
l i

sc
he

m
ia

 
C

a
-E

D
TA

 3
00

 m
M

 (
5 
µL

; i
.c

.v
.)

; p
re

-t
x:

 
G

lu
R2

 m
RN

A
 a

nd
 p

ro
te

in
 e

xp
re

ss
io

n,
 C

a
sp

a
se

-3
-a

c
tiv

ity
, T

SQ
, T

U
N

EL
 

(2
2)

BC
C

A
O

 (
5 

m
in

 o
c

c
lu

sio
n)

 
30

 m
in

 o
r p

o
st

-t
x:

 3
, 6

, 4
8,

 6
0,

 o
r 7

2 
h.

48
 h

 to
 5

 d
a

ys
 p

o
st

-is
c

he
m

ia
/C

a
-E

D
TA

 p
re

-t
x:

 re
d

uc
e

d
 Z

n 
le

ve
ls,

 G
lu

R2
 

a
nd

 R
a

t/
G

lo
b

a
l i

sc
he

m
ia

d
o

w
n-

re
g

ul
a

tio
n,

 a
nd

 e
a

rly
 s

ta
g

e
s 

o
f a

p
o

p
to

sis
 in

 C
A

1 
c

e
lls

; C
a

-E
D

TA
 

4-
V

O
 (

10
 m

in
 o

c
c

lu
sio

n)
.

Po
st

-t
x 

b
e

tw
e

e
n 

48
 a

nd
 6

0 
h:

 re
sc

ue
d

 C
A

1 
c

e
lls

 b
y 

b
lo

c
ki

ng
 th

e
 la

te
r 

st
a

g
e

s 
o

f a
p

o
p

to
sis

 (
D

N
A

 fr
a

g
m

e
nt

a
tio

n)
.

Ra
b

b
it/

G
lo

b
a

l i
sc

he
m

ia
; 

–
M

ic
ro

-d
ia

ly
sis

 c
o

lle
c

te
d

 4
 to

 6
 h

 p
o

st
-is

c
he

m
ia

; a
na

ly
ze

d
 w

ith
 p

Zn
 

(3
8)

in
fla

ta
b

le
 n

e
c

k 
to

ur
ni

q
ue

t 
m

e
te

r/
Isc

he
m

ia
 in

d
uc

e
d

 im
m

e
d

ia
te

 ri
se

 in
 e

xt
ra

c
e

llu
la

r Z
n 

le
ve

ls 
fro

m
 

&
 s

ys
te

m
ic

 h
yp

o
p

e
rf

us
io

n 
b

a
se

lin
e

 (
19

 n
M

) 
in

 h
ip

p
o

c
a

m
p

us
. R

e
p

e
rf

us
io

n 
in

d
uc

e
d

 g
re

a
te

r r
ise

 in
 

(3
0 

m
in

 o
c

c
lu

sio
n)

.
e

xt
ra

c
e

llu
la

r Z
n 

le
ve

ls 
(~

10
0 

nM
).

 G
lu

ta
m

a
te

 re
le

a
se

 w
a

s 
e

a
rli

e
r a

nd
 

sh
o

rt
e

r i
n 

d
ur

a
tio

n 
th

a
n 

Zn
 re

le
a

se
Ra

t/
Fo

c
a

l i
sc

he
m

ia
 tM

C
A

O
 

C
a

-E
D

TA
 1

00
 m

M
 (

5 
µL

; i
.c

.v
.)

; p
re

-t
x:

 
In

fa
rc

t v
o

lu
m

e
 a

ss
e

ss
e

d
 3

, 6
, &

 2
4 

h 
p

o
st

-is
c

he
m

ia
/C

a
-E

D
TA

 p
re

-t
x:

 
(3

0)
(6

0 
m

in
 o

c
c

lu
sio

n)
.

30
 m

in
d

e
le

te
rio

us
 e

ffe
c

t o
n 

e
a

rly
 in

fa
rc

t d
e

ve
lo

p
m

e
nt

: l
a

rg
e

r i
nf

a
rc

t v
o

lu
m

e
s 

a
t 3

 a
nd

 6
 h

 b
ut

 s
im

ila
r t

o
 c

o
nt

ro
l a

t 2
4 

h.
Ra

t/
G

lo
b

a
l i

sc
he

m
ia

 4
-V

O
 

–
TS

Q
 s

ta
in

in
g

 0
 to

 2
4 

h 
p

o
st

-is
c

he
m

ia
/Z

n 
a

c
c

um
ul

a
tio

n 
in

 C
A

1 
c

e
lls

 a
t 2

4 
h 

(3
6)

(3
0 

m
in

 o
c

c
lu

sio
n)

.
b

ut
 n

o
t b

e
fo

re
. M

ic
ro

-d
ia

ly
sis

 c
o

lle
c

te
d

 0
 to

 3
h 

p
o

st
-is

c
he

m
ia

; a
na

ly
ze

d
 

w
ith

 fl
a

m
e

le
ss

 A
A

Su . E
xt

ra
c

e
llu

la
r Z

n 
le

ve
ls 

in
 C

A
1 

a
re

a
 in

c
re

a
se

d
 to

 
~6

00
 n

M
 w

ith
in

 1
5 

m
in

 o
f o

c
c

lu
sio

n,
 d

e
c

re
a

se
d

 d
ur

in
g

 re
p

e
rf

us
io

n,
 a

nd
 

re
tu

rn
e

d
 to

 b
a

sa
l l

e
ve

ls 
(~

30
0 

nM
).

Ra
t/

Fo
c

a
l i

sc
he

m
ia

 tM
C

A
O

 
–

M
ic

ro
-d

ia
ly

sis
 c

o
lle

c
te

d
 0

 to
 3

 h
 p

o
st

-is
c

he
m

ia
; a

na
ly

ze
d

 w
ith

 fl
a

m
e

le
ss

 
(6

0 
m

in
 o

c
c

lu
sio

n)
.

A
A

S/
Ex

tra
ce

llu
la

r Z
n 

le
ve

ls 
in

cr
ea

se
d

 to
 ~

30
0 

nM
 w

ith
in

 1
5 

m
in

 o
f o

cc
lu

sio
n,

 
d

e
c

re
a

se
d

 d
ur

in
g

 re
p

e
rf

us
io

n,
 a

nd
 re

tu
rn

e
d

 to
 b

a
sa

l l
e

ve
ls 

(~
15

0 
nM

).
(3

7)

a
4-

V
O

, 4
-v

e
ss

e
l o

c
c

lu
sio

n.
b
TS

Q
, N

-[
6-

m
e

th
o

xy
-8

-q
ui

no
ly

l]-
P-

to
lu

e
ne

su
lfo

na
m

id
e

.
c
tM

C
A

O
, t

ra
ns

ie
nt

 m
id

d
le

 c
e

re
b

ra
l a

rt
e

ry
 o

c
c

lu
sio

n.
d
Zn

PP
, z

in
c

 p
ro

to
p

o
rp

hy
rin

.
e
p

re
-t

x,
 p

re
-t

re
a

tm
e

nt
.

f in
tr

a
-t

x,
 in

tr
a

-t
re

a
tm

e
nt

.
g
p

M
C

A
O

, p
e

rm
a

ne
nt

 m
id

d
le

 c
e

re
b

ra
l a

rt
e

ry
 o

c
c

lu
sio

n.
h
p

o
st

-t
x,

 p
o

st
-t

re
a

tm
e

nt
.

i 2-
V

O
, 2

-v
e

ss
e

l o
c

c
lu

sio
n.

j Zn
, z

in
c

.
k
Zn

C
l 2, 

zin
c

 c
hl

o
rid

e
.

l PP
, p

ro
to

p
o

rp
hy

rin
.

m
BC

C
A

O
, b

ila
te

ra
l c

o
m

m
o

n 
c

a
ro

tid
 o

c
c

lu
sio

n.
n
TU

N
EL

, T
e

rm
in

a
l D

e
o

xy
nu

c
le

o
tid

yl
 T

ra
ns

fe
ra

se
 M

e
d

ia
te

d
 d

U
TP

 N
ic

k 
En

d
 L

a
b

e
lin

g
.

o
H

-E
, h

e
m

a
to

xy
lin

 a
nd

 e
o

sin
 s

ta
in

.
p
TF

L-
Zn

, N
-(

6-
m

e
th

o
xy

-8
q

ui
no

ly
l)-

P-
c

a
rb

o
xy

b
e

nz
o

yl
su

lfo
na

m
id

e
.

q
”0

” 
hr

 re
fe

rs
 to

 th
e

 ti
m

e
 c

o
in

c
id

in
g

 w
ith

 th
e

 o
ns

e
t o

f r
e

p
e

rf
us

io
n

r C
M

1-
IH

C
, a

nt
ib

o
d

y 
a

g
a

in
st

 a
c

tiv
a

te
d

 c
a

sp
a

se
-3

 im
m

un
o

hi
st

o
c

he
m

ist
ry

.
s Zn

Se
A

M
G

, z
in

c
-s

e
le

ni
um

 a
ut

o
m

e
ta

llo
g

ra
p

hy
 te

c
hn

iq
ue

.
t G

F-
A

A
S,

 g
ra

p
hi

te
 fu

rn
a

c
e

 a
to

m
ic

 a
b

so
rp

tio
n 

sp
e

c
tr

o
sc

o
p

y.
u A

A
S,

 a
to

m
ic

 a
b

so
rp

tio
n 

sp
e

c
tr

o
sc

o
p

y.



P R O C E E D I N G S

M O L  M E D  1 3 ( 7 - 8 ) 3 8 0 - 3 8 7 ,  J U L Y - A U G U S T  2 0 0 7  |  G A L A S S O  A N D  D Y C K  |  3 8 3

prevented ischemic-induced intracellular
zinc accumulation and subsequent cellu-
lar demise, likely by inhibiting zinc
translocation.

More direct evidence for the transloca-
tion of zinc was provided by the findings
of Koh and others (11), who demon-
strated that during a brief period of
global ischemia, intracellular zinc accu-
mulation in vulnerable CA1 pyramidal
hippocampal neurons preceded degener-
ation, which could be prevented with the
intracerebroventricular administration of
the high affinity, membrane-impermeable
zinc-chelator, ethylenediaminetetraacetic
acid (EDTA) saturated with calcium
(Ca-EDTA). This finding convincingly
postulated that selective neuronal death
of CA1 neurons during global ischemia
was mediated by the release of synaptic
vesicle zinc from a subset of excitatory
terminals and its subsequent trans-
location into vulnerable post-synaptic
neurons. Furthermore, intracellular zinc
accumulation preceded neuronal degen-
eration, which could be prevented with
the administration of an extracellular
zinc chelator.

In follow-up to the findings of Koh
and others (11), Tsuda and colleagues
(12) examined the induction of ZnT-1
mRNA expression in the CA1 subfield of
the hippocampus following global ische-
mia. It was postulated that in response to
the increased levels of intracellular zinc,
vulnerable neurons would up-regulate
ZnT-1, the plasma membrane-localized
zinc transporter that facilitates zinc ef-
flux (13). While ZnT-1 mRNA expression
was enhanced as soon as 12 h post-
ischemia, without subsequent ZnT-1
protein expression, cellular demise en-
sued by three days post-ischemia.

Park and colleagues (14) demonstrated
that zinc-mediated neuronal death follow-
ing ischemia may be achieved through the
specific induction of p75NTR and its associ-
ated death executor, NADE. Following
global ischemia, p75NTR and NADE induc-
tion was detected in degenerating CA1
pyramidal neurons exhibiting dense zinc
accumulation. The co-induction of p75NTR

and NADE was found to be dependent

upon zinc levels because the administra-
tion of Ca-EDTA completely blocked the
induction of p75NTR and NADE and sub-
sequent neurodegeneration of CA1 py-
ramidal neurons.

Culture studies have demonstrated
that zinc neurotoxicity may promote the
disruption of different stages of cellular
respiration through depletion of ATP and
the oxidized form of the coenzyme,
nicotinamide adenine dinucleotide
(NAD+) (15). Animal studies have
demonstrated that the administration of
pyruvate, the end metabolite of glycoly-
sis, can achieve neuroprotection by nor-
malizing metabolic disturbances and an-
tagonizing zinc neurotoxicity following
global ischemia (16). Post-ischemic sup-
plementation with pyruvate was found
to provide remarkable, long-lasting neu-
roprotection when administered within 1
h after the onset of reperfusion (16).

Lee and colleagues (17) found that the
intracerebroventricular administration of
Ca-EDTA prior to mild focal ischemia
achieved early neuroprotection against
zinc accumulation and subsequent cellu-
lar demise. This effect, however, was lost
if either the ischemic insult was more
pronounced, if the survival period was
extended to two weeks post-ischemia, or
if Ca-EDTA treatment was continuously
administered.

While Johansen and others (10)
demonstrated that deep hypothermia
(29°C) reduces interneuronal zinc
movement and subsequent death,
Tsuchiya and colleagues (18) investi-
gated the impact of mild hypothermia
(33°C) on zinc release and associated
neuronal death following global ische-
mia. Mild intra-ischemic hypothermia
was found to markedly reduce zinc ac-
cumulation and associated degenera-
tion of hippocampal neurons 72 h fol-
lowing ischemia.

Shabanzadeh and colleagues (19)
found that intraperitoneal pre-treatment
of zinc alone or in conjunction with the
GABAA antagonist, bicuculline had detri-
mental effects on neurological deficits
and the development of the infarct fol-
lowing induction of focal ischemia.

It is now well established that there is
an ischemic-mediated regulation of the
subunit composition of calcium A/K
channels (20). The GluR2 hypothesis pos-
tulates that reduced GluR2 expression al-
lows for the toxic calcium, and even zinc
entry during ischemia (5,21). Calderone
and others (22) demonstrated that zinc
plays an integral role in this regulation
through its persistent downregulation of
GluR2 mRNA (22). Increasing cytosolic
zinc levels, for instance, have been
shown to induce the expression of a zinc-
finger transcription factor REST (restric-
tive element-1 silencing transcription fac-
tor), which is able to suppress
neural-specific target genes, including
GluR2 (22,23). Calderone and colleagues
(22) further demonstrated that during is-
chemia, zinc triggers neuronal death
through temporally distinct mechanisms.
It was discovered that intracerebroven-
tricular pre-treatment with Ca-EDTA sig-
nificantly attenuated the ischemia-in-
duced down-regulation of GluR2 mRNA
and protein expression in the CA1 hip-
pocampal subfield. Ca-EDTA pre-treat-
ment further blocked the early stages of
apoptosis in CA1 neurons by reducing
levels of cytochrome c and caspase 3 ac-
tivity and DNA fragmentation. Further-
more, Ca-EDTA, when administered be-
tween 48 and 60 h post-ischemia, also
prevented zinc accumulation and degen-
eration of CA1 pyramidal neurons, likely
by blocking the later stages of apoptosis,
but not when administered at 3, 6, or 72
h post-ischemia.

While the above studies demonstrate
that elevated intracellular zinc levels
during ischemia serve as a critical media-
tor of neuronal death, zinc inhibition
achieved through either early or late
chelation paradigms may be effective in
combating zinc neurotoxicity.

NEUROPROTECTION BY ZINC IN
ISCHEMIA

In contrast to chelation-based thera-
peutic intervention, various studies have
demonstrated neuroprotective benefits
following the administration of various
zinc compounds. Yamasaki and col-
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leagues (24), for example, examined the
effectiveness of zinc protoporphyrin
(ZnPP) in mediating post-ischemic brain
edema by selectively blocking the cy-
tokine, interleukin-1 (IL-1). In this study,
following transient focal ischemia, ZnPP
was topically applied to the lateral ven-
tricle at the onset of reperfusion. Brain
edema was assessed 24 h later using the
wet and dry method (25) and the topical
application of ZnPP was found to reduce
ischemic brain edema significantly by
blocking IL-1 activity.

As a follow-up investigation into the
reported anti-inflammatory effects of
ZnPP demonstrated by Yamasaki and
others (24), Kadoya and colleagues (26)
demonstrated that ZnPP was limited in
its level of neuroprotection by the tempo-
ral parameters of its administration and
whether or not reperfusion followed the
onset of ischemia. Specifically, intraperi-
toneal ZnPP pretreatment was found to
significantly reduce infarct volume and
post-ischemic brain edema in the tran-
sient model of ischemia (tMCAO). How-
ever, the neuroprotective effects of ZnPP
were lost if either the severity of the is-
chemic insult increased (permanent
MCAO) or if treatment was delayed two
or four hours following ischemic onset.

In a follow-up study to Kadoya and
others (26), Zhao and colleagues (27) set
out to determine whether the zinc or
protoporphyrin complement of ZnPP
possessed neuroprotective capabilities.
Equimolar doses of zinc chloride (ZnCl2),
PP, and ZnPP were all found to reduce
the lesion size, but only ZnPP and PP
were found to ameliorate ischemic brain
edema. As such, this study suggests that
zinc ions, in comparison to protopor-
phyrin, provide neuroprotection by
mechanisms other than reducing brain
edema.

Matsushita and colleagues (28) later
demonstrated that zinc supplementation
could provide neuroprotection to the CA1
hippocampal subfield during global is-
chemia in the gerbil. Because the gerbil
possesses isolated cerebral hemispheres
and an incomplete circle of Willis, the bi-
lateral occlusion of the common carotid

arteries (BCCAO) results in pronounced
global ischemia (29). It was found that
while superacute (1 h) subcutaneous pre-
treatment with ZnCl2 had no effect, suba-
cute (48 and 24 h) pretreatment afforded
significant neuroprotection to vulnerable
CA1 cells against delayed neuronal death.

Recently, Kitamura and colleagues (30)
have found that reduction in zinc levels
following intracerebroventricular injec-
tion of Ca-EDTA prior to focal ischemia
accelerated the early development of the
infarct, suggesting the need for a mini-
mum complement of zinc to maintain
cellular viability, even during cerebral
ischemia.

CHANGES IN ZINC LEVELS DURING
ISCHEMIA

Alternatively, other studies have at-
tempted to monitor dynamic changes in
zinc levels during cerebral ischemia in
the absence of therapeutic interventions.
Sorensen and colleagues (31) set out to
examine if altered levels of synaptic vesi-
cle zinc during the course of focal ische-
mia could be detected histochemically
(32). Relying on the neo-Timm stain, it
was demonstrated that as soon as 7 min
following ischemic onset, zinc positive-
terminal staining was visibly decreased
within the ischemic region and was rela-
tively absent for all remaining times ex-
amined, up to seven days post-ischemia.
The rapid reduction and eventual ab-
sence of zinc staining was attributed to
the likely release of zinc from synaptic
vesicles. The emergence of zinc-stained
neurons at one hour post-ischemia may
reflect zinc accumulation following
trans-synaptic movement of zinc from
surrounding zinc-enriched terminals.

Similarly, our laboratory has examined
the temporo-spatial changes in synaptic
vesicle zinc levels following focal ische-
mia using the zinc-selenium autometal-
lography technique (33). Utilizing the
technique of photothrombosis (34), we
found that the core of the infarct was de-
void of zinc staining up until 24 h post-
ischemia, the last time point examined,
while the peri-infarct region showed a
significant increase (at least 20%) in

staining intensity up to six hours post-
ischemia. Interestingly, infarct volumes
were found to be significantly larger, at
least double in size, at the latter time
points (12 and 24 h) compared with in-
farct volumes assessed at the earlier time
points (30 min, 1–6 h). We also verified
these findings in a transient model of
focal ischemia to confirm the vascular ac-
cess of sodium selenite. The reason for
the elevated levels of synaptic zinc stain-
ing within the periphery of the infarct is
currently under investigation but may
represent a compensatory mechanism to
buffer the release of synaptic vesicle zinc
and, moreover, may even delineate the
putative penumbral region.

In addition to utilizing histochemical
stains or fluorescent dyes to measure
changes in zinc levels during ischemia,
detection using micro-dialysis has also
been employed. Using dual probe
micro-dialysis coupled with graphite fur-
nace atomic absorption spectroscopy
(MD-GFAAS), Yang and colleagues (35)
detected a significant decrease in zinc
levels from baseline in the ipsilateral cor-
tical hemisphere and slight changes in
the contralateral hemisphere during focal
ischemia. Although this study suggested
that extracellular zinc levels drop during
ischemia, more recent micro-dialysis
studies suggest that while a temporal de-
rangement in extracellular zinc levels
during ischemia occurs, levels are in-
creasing rather than decreasing.

Kitamura and colleagues (36) exam-
ined the temporal release profile of extra-
cellular zinc using micro-dialysis and also
examined subsequent intracellular zinc
accumulation in the CA1 subfield of the
hippocampus during global ischemia.
Within 15 min post-ischemia, extracellu-
lar zinc levels reached a peak (~600 nM)
that was double the basal level. Subse-
quently, extracellular zinc levels de-
creased and returned to baseline 15 min
following reperfusion. A similar release
profile also was found for glutamate, al-
though glutamate levels reached peak
level within 30 min and were more than
20× the basal level. Additionally, using
TSQ fluorescence, evidence for intracellu-
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lar zinc-accumulation was found within
the CA1 pyramidal neurons but not be-
fore 24 h post-ischemia, suggesting that
the release of zinc from synaptic vesicle
stores is neither excessive nor immedi-
ately accumulated in vulnerable post-
synaptic neurons. Similarly, Kitamura
and colleagues (37) also found that extra-
cellular zinc levels in the focal ischemic
cortex increased within 15 min, peaked to
twice the basal level (~300 nM) within 30
min post-ischemia, and returned to basal
level within 15 min after reperfusion.

Recently, Frederickson and colleagues
(38) also have used micro-dialysis to ex-
amine extracellular zinc levels during
global ischemia and reperfusion. Follow-
ing ischemic onset, extracellular zinc lev-
els increased and were synchronous with
glutamate release. However, the reperfu-
sion-induced zinc release was more pro-
nounced ( > 100 nM, in some cases), in
both intensity and duration than the ini-
tial ischemic-induced zinc release. More-
over, the delayed reperfusion-induced
zinc release was unaccompanied by glu-
tamate release, possibly reflecting a re-
lease of zinc from intracellular stores,
such as metallothioneins (39–41) or mito-
chondria (42–44).

Although the predominance of avail-
able literature from in vivo ischemic
studies has focused on the involvement
of synaptic vesicle zinc, it is likely that
intracellular zinc accumulation during is-
chemia is achieved through a possible
synergism of zinc release from both
synaptic and intracellular stores of zinc,
as most recently demonstrated during
global ischemia (38) and reported in
other experimental paradigms (45–51).

CONCLUSION
Despite recognizing the involvement of

zinc in cerebral ischemia nearly twenty
years ago, we are only beginning to un-
ravel the physiological functions of zinc
during ischemia. Considering the multi-
modal impact that zinc has on cellular
physiology, undoubtedly intricate, over-
lapping, and even synergistic mechanisms
are liable to account for its toxic or protec-
tive capabilities (5,6,52–54; Figure 1).

Figure 1. Schematic Overview of the Putative Toxic and Protective Mechanisms Elicited
by Zinc during Cerebral Ischemia

During ischemia, heightened release of zinc from a subset of glutamatergic terminals
likely promotes the translocation and accumulation of zinc in vulnerable post-synaptic neu-
rons. Following release, synaptic zinc is thought to achieve cellular access predominately
through subpopulations of calcium-permeable AMPA and/or kainate channels (Ca-A/K)
(56–58). Zinc entry may also be facilitated by the zinc-sodium exchanger and less predomi-
nately through voltage sensitive calcium channels (VSCC) or NMDA-type glutamate recep-
tors (56,57,59,60). Intense cytosolic zinc overloads, likely mediated by Ca-A/K receptor chan-
nels, can promote pronounced mitochondrial dysfunction and reactive oxygen species
(ROS) generation to trigger necrosis, whereas milder cytosolic zinc loads may augment
apoptotic pathways (43,57,61–63). The cellular oxidative stress and acidosis achieved during
ischemia may additionally promote the liberation of zinc from zinc-ligands, such as metal-
lothioneins (39,49,64,65). In the attempt to confer resistance to the rising cytosolic zinc levels,
the zinc transporter, ZnT-1 and metallothionien III can be upregulated during ischemia to
promote zinc efflux and cytosolic buffering, respectively (12,66,67). Zinc also plays an inte-
gral role in the subunit expression of Ca-A/K channels during ischemia by altering transcrip-
tional regulation that leads to GluR2 subunit downregulation, the presence of which renders
A/K receptor channels calcium-impermeable (20–23). Zinc also can activate signal trans-
duction pathways, such as protein kinase C, which can promote ROS generation (68,69).
Zinc also can augment glutamate-induced neuronal injury by directly inhibiting GABAA

channels and inhibiting glutamate re-uptake by blocking excitatory amino acid transporters
(EAAT-1) expressed on glial cells (70–72). During ischemia, activation of Ca-A/K receptor
channels, acidosis, and elevated zinc levels can also work synergistically to promote glial in-
jury (73). Conversely, during ischemia, zinc also may achieve protective effects by substan-
tially inhibiting calcium influx by blocking NMDA-type glutamate receptor channels or acid-
sensing ion channels (ASICs) (74–80). Zinc also can exert anti-apoptotic efforts through the
inhibition of various caspases, pro-apoptotic genes, and endonucleases (81–83).
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While the mechanisms by which zinc
mediates or prevents ischemic-induced
injury are complex, conceivably, as is the
case for calcium, cells are also expected to
possess a specific zinc set-point, by which
too little or too much zinc can promote
cellular demise (5). As such, studies exam-
ining either zinc chelation or supplemen-
tation should heed the delicate balance by
which zinc achieves its toxic or protective
capabilities. Moreover, in view of the clin-
ical importance of zinc in mediating ische-
mic injury, future investigation is war-
ranted to develop more effective,
potentially zinc-based therapies. To this
effect, a novel lipophilic BAPTA diester,
DP-b99 already has shown remarkable
clinical promise in treating patients with
ischemia. The success of DP-b99 in the
laboratory and in the clinic, thus far, has,
in part, been attributed to the delicate
manner by which it buffers and re-
distributes zinc ions (55).
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