Insulin Decreases Inflammatory Signal Transcription Factor Expression in Primary Human Liver Cells after LPS Challenge

Marc G Jeschke,1,2 Dagmar Klein,3 Wolfgang E Thasler,4 Ulrich Bolder,3 Hans-Jürgen Schlitt,3 Karl-Walter Jauch,4 and Thomas S Weiss3

1Shriners Hospitals for Children, Galveston, TX, USA; 2Department of Surgery, University Texas Medical Branch, Galveston, TX, USA; 3Department of Surgery, University of Regensburg Hospital, Germany; 4Department of Surgery, LM University Munich Grosshadern, Munich, Germany

Hepatic homeostasis is essential for survival in critically ill and burned patients. Insulin administration improves survival and decreases infections in these patients. To determine the molecular mechanisms, the aim of the present study was to establish a stress model using primary human hepatocytes (PHHs) and to study the effects of insulin on the hepatic inflammatory signaling cascade. Liver tissue was obtained from general surgical patients, and PHHs were isolated and maintained in culture. Primary hepatocyte cultures were challenged with various doses of lipopolysaccharide (LPS), and the inflammatory signal transcription cascade was determined by real-time PCR. In subsequent experiments, primary hepatocyte cultures were challenged with LPS and insulin was added in various doses. Glucose was determined by colorimetric assays. PHHs treated with 100 µg/mL LPS showed a profound inflammatory reaction with increased expression of interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF), and signal transducer and activator of transcription 5 (STAT-5). Insulin at 10 IU/mL significantly decreased IL-6, TNF, and IL-1β at pretranslational levels, an effect associated with decreased STAT-5 mRNA expression (P < 0.05). Glucose concentration and cellular metabolic activity were not different between controls and insulin-treated cells. Based on our results, we suggest that primary hepatocyte cultures can be used to study the effect of LPS on the inflammatory cascade. Insulin decreases hepatic cytokine expression, which is associated with decreased STAT-5 expression.

Online address: http://www.molmed.org
smooth muscle and endothelial cells. Data suggest that hyperglycemia increases reactive oxygen species (ROS) resulting in increased phospholipase A2 and C and nuclear factor-κB (NF-κB). Increased NF-κB stimulates tumor necrosis factor (TNF) expression, which in an autocrine fashion increases ROS. TNF, IL-1, and IL-6 also inhibit insulin signaling, which exacerbates inflammation and ROS formation (8-11).

The liver, as one of the main metabolic and inflammatory organs, plays a major role after stress and, therefore, our group focused its research effort on the hepatic poststress response. To determine the cellular and molecular effects of insulin on liver, we proposed that an in vitro model would be most suitable to study the molecular and signaling effects of insulin. Therefore, the aim of the present study was two-fold. First, we tested the hypothesis that adult primary human hepatocytes undergo a stress response and, therefore, can be used as a system to study the effect of stress on the liver. Second, we aimed to determine whether insulin administration to primary human hepatocytes (PHHs) alters the hepatic stress and signaling response, and whether we find indicators for insulin acting as an anti-inflammatory mediator per se or exerting its effects through modulation of glucose serum levels.

MATERIALS AND METHODS

Reagents

Collagenase (type IV), HEPES, Earle’s balanced salt solution (EBSS), and other buffer supplements were purchased from Sigma (Taufkirchen, Germany). Collagen I–coated plates (Biocoat) were purchased from BD (Bedford, UK), Percoll from Amersham, and fetal calf serum (FCS) from Biochrom (Berlin, Germany). Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L glucose was obtained from Biowhitaker (Verviers, Belgium), and all other media additives were purchased from Serva (Heidelberg, Germany).

Hepatocyte Preparation and Culture

Tissue samples from human liver resection were obtained from patients undergoing partial hepatectomy for metastatic liver tumors of colorectal cancer. The tissue was obtained at the furthest site possible from the cancer to avoid oncogenic or inflammatory effects on the normal liver tissue by the primary disease. Experimental procedures were performed according to the guidelines of the charitable state-controlled foundation, Human Tissue and Cell Research (HTCR), with informed patient’s consent (12) and approved by the local ethics committee of the University of Regensburg. Human hepatocytes were isolated using a modified two-step EGTA/collagenase perfusion procedure and maintained in culture as described (13,14). Viability of isolated hepatocytes was determined by trypan blue exclusion, and cells with viability >85% were used for cell culture. Cells were plated on collagen-precoated six-well plates at a density of 1.2 × 10^5 cells/cm² in an appropriate volume of culture media. The medium consisted of DMEM with 10% FCS, 2 mM L-glutamine, and supplements (7.3 ng/mL glucagon, 0.5 mU/mL insulin, 8 µg/mL hydrocortisone, 100 µg/mL streptomycin, and 100 U/mL penicillin). After 16 h of plating, the medium was replaced with medium without serum and insulin. Cells were incubated at 37°C in a humidified incubator with 5% CO₂ and media were changed daily unless otherwise stated. Viability of hepatocytes during the culture period was monitored by cell morphology (light microscopy, image analysis) and determination of enzyme release into culture medium (AST activity).

The importance of nonparenchymal cells to mount a response to a lipopolysaccharide (LPS) challenge was demonstrated when these cells were removed from the PHH culture by an additional purification step (Percoll purification) (15). It was recently shown that direct contact between hepatocytes and Kupffer cells affects cell function and viability of both types of cells (16).

Additionally, we performed a Percoll purification step to determine the composition of the primary hepatocyte fractions and virtually removed Kupffer, endothelial, and hepatic-stellate cells. Because cytokine activation was very low (1/20 to 1/40) in Percoll-purified PHH, all activation experiments were carried out without the second purification step.

Quantification of mRNA Expression by Real-Time PCR

RNA was isolated from the purified cells, and PCR was performed for various sequences of parenchymal and nonparenchymal liver cells. Integrity of the RNA was verified by agarose gel electrophoresis and by visualization of ribosomal RNA by ethidium bromide staining. First-strand cDNA was synthesized using 1 µg total RNA and the avian myeloblastosis virus reverse transcription reaction (Promega, Madison, WI, USA). Transcript levels were quantified using real-time RT-PCR technology (Lightcycler, Roche, Penzberg, Germany). The QuantiTect Primer Assay for CD31 (QI0081172) was obtained from Qiagen (Hilden, Germany). The sense and reverse primers are shown in Table 1.

For PCR, 1 to 3 µL cDNA preparation, 2.4 µL 25 mM MgCl₂, 0.5 µM forward and reverse primer, and 2 µL SybrGreen LightCycler Mix (Roche, Mannheim, Germany) were applied in a total volume of 20 µL. PCR programs for each transcript were performed according to the manufacturer’s instructions with individual modifications. MgCl₂ concentration and annealing temperature were optimized for each primer set. The PCR reaction was evaluated by melting curve analysis following the manufacturer’s instructions and checking the PCR products on 1.8% agarose gels. Each quantitative PCR was performed at least in duplicate, for 3 sets of RNA preparations.

LPS Stimulation of PHH

To induce an inflammatory reaction, LPS (E. coli LPS serotype 0111:B4; Sigma) was added to PHHs 48 h after perfusion.

12 | JESCHKE ET AL. | MOL MED 14(1-2)11-19, JANUARY-FEBRUARY 2008
and isolation. Twenty-four hours before the experiments, cells were plated in FCS- and insulin-free media. We conducted a dose-response study with LPS using various doses: 10 ng/mL, 100 ng/mL, 1 µg/mL, 10 µg/mL, 100 µg/mL, and 500 µg/mL.

Insulin Administration to PHHs

After conducting the LPS dose-response study, PHHs were stimulated with 100 µg/mL LPS. After 30 min of LPS incubation, insulin was added to the media. The first experiments were conducted to perform a dose-response study; thus various doses of insulin were added. After incubating the cells for 4, 8, 12, and 24 h, supernatant and cells were harvested for further analysis. The insulin doses tested were 0.5, 2.5, 5, 10, and 50 IE/mL.

RESULTS

Perfusion and standard isolation of PHHs resulted in healthy and viable cells, with at least 80% viability. Figure 1A depicts a typical primary human hepatocyte cell culture. To prove the contribution of accompanying nonparenchymal cells, we performed a RT-PCR analysis of freshly isolated hepatocytes. We could detect signals of particular CD68 (Kupffer cell) and CD31 (endothelial cell) in isolated hepatocytes only because of the high sensitivity of RT-PCR analysis (Figure 2A).

Initially, we measured IL-6 levels in response to different doses of LPS at various time points. We found that LPS causes a significant increase in IL-6 in the supernatant. An LPS dose of 100 µg/mL resulted in the greatest IL-6 increase 8, 12, and 24 h after LPS administration (Figure 3).

Table 1. Oligonucleotide sequence for real-time PCR

<table>
<thead>
<tr>
<th>Sequence, 5' to 3'</th>
<th>Sequence length, bp</th>
<th>Concentration, mM</th>
<th>Annealing temperature, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Actin Forward</td>
<td>AGA GGG AAA TCG TGC GTG AC</td>
<td>138</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>CAA TAG TGA TGA CCT GGC GTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH Forward</td>
<td>GCG GGG CTC TCC AGA ACA TCA T</td>
<td>301</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>CCA GCC CCA GGG TCA AAG TG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1β Forward</td>
<td>CAG GCC GGC TCA GTT GTT</td>
<td>195</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>TCC GAG GTG GCA GTT CAG TG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α Forward</td>
<td>CGC CAC CAC GCT CTT CTG C</td>
<td>354</td>
<td>2</td>
</tr>
<tr>
<td>Reverse</td>
<td>ACG GCC ATG CGG CTG ATG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6 Forward</td>
<td>CCC AGT ACC CCC AGG AGA AGA</td>
<td>426</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>GTG GCA TCA GGG GTG GTT AIT G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-10 Forward</td>
<td>GAC CCA GCC CCT TGA GAA ACC T</td>
<td>359</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>GCC CCA AGC CCA GAG ACA AGA AGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFN-γ Forward</td>
<td>GGG TTC TCT TGG CTG TIA CT</td>
<td>166</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>TGG GCT CTG CAT TAT TIT TC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT-5 Forward</td>
<td>TCA TCA TCG AGA AGC AGC C</td>
<td>317</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>TTC CGT CAC AGA CTC TGC AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-SMA Forward</td>
<td>CGT GGC TAT TCC TTC GTT AC</td>
<td>174</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>TGC CAG CAG ACT CCA TCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD68 Forward</td>
<td>AGC CCA GGA TTC ACC AGT T</td>
<td>144</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>GGT TTT GTT GGG GTG TAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin Forward</td>
<td>GCTGCCATGGGAGATGCTGGTGA</td>
<td>174</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>GCAAGTCAAGACGAGCATCCTCAGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK18 Forward</td>
<td>CCCCCTGCGCCCTACAGA</td>
<td>248</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td>GCGGGTTGGGTGCTCITITTG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For measurements of cell activity, the CellTiter 96 Aqueous nonradioactive cell proliferation assay (cat. no. G5421; Promega) was performed according to the kit guidelines. Briefly, cells were treated with serum-free medium alone (control), with LPS or insulin alone, or with the combination of LPS and insulin as described above. After 12 and 24 h, the conversion of a tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2H-tetrazolium, inner salt, MTS] into aqueous, soluble formazan by metabolically active cells was determined by measuring the absorbance at 490 nm. The absorbance is directly proportional to the number of metabolically active cells.
In the subsequent study, we conducted a dose-response study for insulin in primary hepatocytes exposed to 100 µg/mL LPS. As depicted in Figure 3B, insulin given at 10 IU/mL significantly attenuates IL-6 expression at 12 and 24 h after LPS administration ($P < 0.05$) (Figure 3B).

Cell proliferation and activity as measured by XTT colorimetric assay showed that there was no difference between LPS, insulin, or the combination at various doses (Figure 4). However, insulin administration at 50 IU/mL caused cell death, (Figure 4).

Insulin at a dose of 10 IU/mL significantly decreased the gene expression for hepatic TNF at 12 and 24 h ($P < 0.05$) (Figure 5). Insulin further significantly decreased hepatic IL-10 mRNA at 8 and 12 h after LPS administration ($P < 0.05$) (Figure 5). Finally, insulin decreased hepatic IFN-γ mRNA at 12 and 24 h after LPS ($P < 0.05$) (Figure 5).

Decreased cytokine mRNA expression was associated with an attenuated expression of signal transducer and activator of transcription-5 (STAT-5) mRNA. Insulin decreased STAT-5 mRNA at 4, 8, and 12 h after LPS administration compared with LPS alone ($P < 0.05$) (Figure 6). We determined glucose levels 12 h after LPS administration and found no difference between groups, suggesting that insulin acts directly rather than indirectly (data not shown).

DISCUSSION

Insulin administration at a dose that kept blood glucose below 110 mg/dL decreased early and late mortality in critically ill patients who underwent thoracic surgery and prevented the incidence of multiorgan failure in patients with a septic focus (5). The mechanisms by which insulin administration exerts these positive effects are not entirely defined. There is evidence that insulin per se acts as an anti-inflammatory molecule (9,17-23), but there is also evidence that insulin acts through modulation of glucose levels (24-30). In a burn and endotoxemic rodent model, we found that insulin administration decreased proinflammatory and increased antiinflammatory mediators associated with improved hepatic function and structure (20,21,23,31). In severely burned patients, insulin improves the inflammatory response and attenuates the acute-phase response (22).

The cellular and molecular mechanisms by which insulin exerts its effects are still not fully understood. To obtain...
knowledge on molecular biology about the effects of insulin during the aftermath of stress, we hypothesized that a human in vitro model is more suitable than a murine in vivo model. Therefore, we tested the hypothesis that adult PHHs undergo a stress response and can be used as a system to study the effect of stress on the liver. In the present study, we showed that primary human hepatocyte cultures obtained by a standard isolation protocol respond to LPS in an inflammatory fashion by producing inflammatory cytokines. This was not expected, as we had tested other cell systems, such as HepG2, C3A, and HL-7702, and they did not respond to stress and did not represent a relevant model to study stress-related responses (data not shown). We also conducted an experiment in which we purified hepatocytes to a degree with almost no detectable Kupffer cells (natural impurity of hepatocytes) and administered LPS. We found that even highly purified hepatocytes are able to answer to the LPS stress without Kupffer cells; however, the magnitude of this response is 20- to 40-fold lower, and therefore, not a proper biological model (data not shown). Our data are in agreement with an earlier report (unpublished data) that indicates that PHHs, and particularly hepatocytes in contact with Kupffer cells, are able to respond to stress and can be used as an in vitro model to study the effects of stress and to further study possible perturbations to attenuate the inflammatory response.

Considerations have to be made about the origin of the samples and their stress response. Tissue samples were obtained from patients undergoing partial hepatectomy for metastatic liver tumors of colorectal cancer. It seems possible that proximity to the cancer metastasis could affect hepatocyte function in a paracrine fashion, particularly in terms of TNF production. To avoid external influence, we did let the cells rest for 2 days before conducting experiments. TNF acts very rapidly, and we suggest that TNF and other inflammatory markers should markedly decrease over these 3 days. In addition, we used each patient sample as its own control, comparing the baseline to minimize variability and errors due different patient samples. In addition, a concern may be that variable endotoxin contamination of the hepatocyte culture system or the variable effect of endotoxin tolerance in cells exposed to endotoxin before the test dose of endotoxin could
the samples were there ever measurable supernatant (culture media). In none of
model, we made repeated attempts to cytokines. When we established this enormous dilution of potentially released many buffers. This process results in an
ous steps for fractioning and washing in process of human hepatocytes from re-
iment is not an important that inflammation is not an important
inflammatory state to begin with? To diminish possible effects, we let the cells rest for 3 days before we conducted the experiments. Our data showed that resting over 3 days improves liver enzymes, implying less cell stress and damage. We were never able to detect any cytokines in the supernatant, and therefore suggest that inflammation is not an important factor. In addition, during the isolation process of human hepatocytes from resected liver tissue, we included numerous steps for fractioning and washing in many buffers. This process results in an enormous dilution of potentially released cytokines. When we established this model, we made repeated attempts to measure inflammatory cytokines in the supernatant (culture media). In none of the samples were there ever measurable amounts of these mediators. In terms of letting these cells rest for 3 days, we propose that these hepatocytes are influenced by the enormous stress during the isolation process (digestion with enzymes, etc.). Therefore, any stimulation of hepatocytes at this stage would be completely unspecified. However, we have conducted extensive studies with regard to postpreparation cellular integrity (LDH, AST, ALT release). We showed that hepatocytes resume physiologic functions sufficient to provide reproducible experimental conditions after 48 h. In our experiments, we expanded this time period of in vitro adaptation up to 72 h simply to make sure we achieved a noninflammatory and regenerative state (Figure 7).

After we found that PHHs respond to the LPS stimulus, we investigated the effect of insulin on the inflammatory response in this cell system. We have shown that insulin administration attenuates proinflammatory cytokine protein and mRNA expression in a dose-dependent fashion. Insulin decreased IL-6, TNF, and IL-1β mRNA. In contrast to in vivo data, insulin also decreased hepatic IL-10 and γ-interferon (IFN-γ) mRNA. Insulin administration in vivo increased systemic concentra-

Figure 4. Cell proliferation and activity as measured by XTT colorimetric assay showed that there was no difference between LPS, insulin, or the combination at various doses.

be present. To avoid endotoxin contamination or conditioning, all isolation and culture steps were performed with LPS-free agents. We could not control previous LPS exposure or tolerance, but we used each patient cells as their own control and, therefore, avoided intrapatient variability and accounted for possible LPS tolerance.

Possible concerns about our study include how the paracrine action of metastatic cancer cells affects the primary hepatocyte cell culture in terms of metabolism and inflammation. By letting the cells rest for 3 days, could this mean that the cells being studied were senescent or undergoing necrosis? Are cells in an inflammatory state to begin with? To diminish possible effects, we let the cells rest for 3 days before we conducted the experiments. Our data showed that resting over 3 days improves liver enzymes, implying less cell stress and damage. We were never able to detect any cytokines in the supernatant, and therefore suggest that inflammation is not an important factor. In addition, during the isolation process of human hepatocytes from resected liver tissue, we included numerous steps for fractioning and washing in many buffers. This process results in an enormous dilution of potentially released cytokines. When we established this model, we made repeated attempts to measure inflammatory cytokines in the supernatant (culture media). In none of the samples were there ever measurable amounts of these mediators. In terms of letting these cells rest for 3 days, we propose that these hepatocytes are influenced by the enormous stress during the isolation process (digestion with enzymes, etc.). Therefore, any stimulation of hepatocytes at this stage would be completely unspecified. However, we have conducted extensive studies with regard to postpreparation cellular integrity (LDH, AST, ALT release). We showed that hepatocytes resume physiologic functions sufficient to provide reproducible experimental conditions after 48 h. In our experiments, we expanded this time period of in vitro adaptation up to 72 h simply to make sure we achieved a noninflammatory and regenerative state (Figure 7).

After we found that PHHs respond to the LPS stimulus, we investigated the effect of insulin on the inflammatory response in this cell system. We have shown that insulin administration attenuates proinflammatory cytokine protein and mRNA expression in a dose-dependent fashion. Insulin decreased IL-6, TNF, and IL-1β mRNA. In contrast to in vivo data, insulin also decreased hepatic IL-10 and γ-interferon (IFN-γ) mRNA. Insulin administration in vivo increased systemic concentra-

Figure 4. Cell proliferation and activity as measured by XTT colorimetric assay showed that there was no difference between LPS, insulin, or the combination at various doses.

be present. To avoid endotoxin contamination or conditioning, all isolation and culture steps were performed with LPS-free agents. We could not control previous LPS exposure or tolerance, but we used each patient cells as their own control and, therefore, avoided intrapatient variability and accounted for possible LPS tolerance.

Possible concerns about our study include how the paracrine action of metastatic cancer cells affects the primary hepatocyte cell culture in terms of metabolism and inflammation. By letting the cells rest for 3 days, could this mean that the cells being studied were senescent or undergoing necrosis? Are cells in an inflammatory state to begin with? To diminish possible effects, we let the cells rest for 3 days before we conducted the experiments. Our data showed that resting over 3 days improves liver enzymes, implying less cell stress and damage. We were never able to detect any cytokines in the supernatant, and therefore suggest that inflammation is not an important factor. In addition, during the isolation process of human hepatocytes from resected liver tissue, we included numerous steps for fractioning and washing in many buffers. This process results in an enormous dilution of potentially released cytokines. When we established this model, we made repeated attempts to measure inflammatory cytokines in the supernatant (culture media). In none of the samples were there ever measurableamounts of these mediators. In terms of letting these cells rest for 3 days, we propose that these hepatocytes are influenced by the enormous stress during the isolation process (digestion with enzymes, etc.). Therefore, any stimulation of hepatocytes at this stage would be completely unspecified. However, we have conducted extensive studies with regard to postpreparation cellular integrity (LDH, AST, ALT release). We showed that hepatocytes resume physiologic functions sufficient to provide reproducible experimental conditions after 48 h. In our experiments, we expanded this time period of in vitro adaptation up to 72 h simply to make sure we achieved a noninflammatory and regenerative state (Figure 7).

After we found that PHHs respond to the LPS stimulus, we investigated the effect of insulin on the inflammatory response in this cell system. We have shown that insulin administration attenuates proinflammatory cytokine protein and mRNA expression in a dose-dependent fashion. Insulin decreased IL-6, TNF, and IL-1β mRNA. In contrast to in vivo data, insulin also decreased hepatic IL-10 and γ-interferon (IFN-γ) mRNA. Insulin administration in vivo increased systemic concentra-

Figure 4. Cell proliferation and activity as measured by XTT colorimetric assay showed that there was no difference between LPS, insulin, or the combination at various doses.

be present. To avoid endotoxin contamination or conditioning, all isolation and culture steps were performed with LPS-free agents. We could not control previous LPS exposure or tolerance, but we used each patient cells as their own control and, therefore, avoided intrapatient variability and accounted for possible LPS tolerance.

Possible concerns about our study include how the paracrine action of metastatic cancer cells affects the primary hepatocyte cell culture in terms of metabolism and inflammation. By letting the cells rest for 3 days, could this mean that the cells being studied were senescent or undergoing necrosis? Are cells in an inflammatory state to begin with? To diminish possible effects, we let the cells rest for 3 days before we conducted the experiments. Our data showed that resting over 3 days improves liver enzymes, implying less cell stress and damage. We were never able to detect any cytokines in the supernatant, and therefore suggest that inflammation is not an important factor. In addition, during the isolation process of human hepatocytes from resected liver tissue, we included numerous steps for fractioning and washing in many buffers. This process results in an enormous dilution of potentially released cytokines. When we established this model, we made repeated attempts to measure inflammatory cytokines in the supernatant (culture media). In none of the samples were there ever measurable amounts of these mediators. In terms of letting these cells rest for 3 days, we propose that these hepatocytes are influenced by the enormous stress during the isolation process (digestion with enzymes, etc.). Therefore, any stimulation of hepatocytes at this stage would be completely unspecified. However, we have conducted extensive studies with regard to postpreparation cellular integrity (LDH, AST, ALT release). We showed that hepatocytes resume physiologic functions sufficient to provide reproducible experimental conditions after 48 h. In our experiments, we expanded this time period of in vitro adaptation up to 72 h simply to make sure we achieved a noninflammatory and regenerative state (Figure 7).

After we found that PHHs respond to the LPS stimulus, we investigated the effect of insulin on the inflammatory response in this cell system. We have shown that insulin administration attenuates proinflammatory cytokine protein and mRNA expression in a dose-dependent fashion. Insulin decreased IL-6, TNF, and IL-1β mRNA. In contrast to in vivo data, insulin also decreased hepatic IL-10 and γ-interferon (IFN-γ) mRNA. Insulin administration in vivo increased systemic concentr-

Figure 4. Cell proliferation and activity as measured by XTT colorimetric assay showed that there was no difference between LPS, insulin, or the combination at various doses.
Figure 5. Insulin at a dose of 10 IU/mL significantly decreased the gene expression of hepatic TNF at 12 and 24 h, hepatic IL-1\(\beta\) mRNA expression 12 h, hepatic IL-6 mRNA at 12 h, hepatic IL-10 mRNA at 8 and 12 h, and hepatic IFN-\(\gamma\) mRNA at 12 and 24 h after LPS administration. *Significant difference between LPS and LPS plus insulin, \(P < 0.05\).
An extensive acute-phase response, however, has been shown to increase morbidity and mortality (40). In the present study, we have shown that insulin administration downregulates proinflammatory mediators in a dose-dependent fashion. A signal transcription factor that appears to be involved is STAT-5. As we detected no difference in glucose concentration and cellular metabolism, we suggest that the beneficial effects of insulin are due to its direct anti-inflammatory effect and not glucose modulation.

ACKNOWLEDGMENTS
This study was supported by the American Surgical Association Foundation, Shriners Hospitals for Children 8660, and Deutsche Forschungsgemeinschaft DFG (Je 233/6-1).

REFERENCES
27. Esposito K, et al. (2002) Inflammatory cytokine...
concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. *Circulation* 106:2067-72.

