Estradiol’s Salutary Effects on Keratinocytes Following Trauma-Hemorrhage Are Mediated by Estrogen Receptor (ER)-α and ER-β

Fariba Moeinpour,1 Mashkoor A Choudhry,1 Luiz F Poli de Figueiredo,2 Kirby I Bland,1 and Irshad H Chaudry1

1Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; 2Department of Surgery, University of Sao Paulo School of Medicine, Sao Paulo, 01246-903, Brazil

Although administration of 17β-estradiol (estrogen) following trauma-hemorrhage attenuates the elevation of cytokine production and mitogen-activated protein kinase (MAPK) activation in epidermal keratinocytes, whether the salutary effects of estrogen are mediated by estrogen receptor (ER)-α or ER-β is not known. To determine which estrogen receptor is the mediator, we subjected C3H/HeN male mice to trauma-hemorrhage (2-cm midline laparotomy and bleeding of the animals to a mean blood pressure of 35 mmHg and maintaining that pressure for 90 min) followed by resuscitation with Ringer’s lactate (four times the shed blood volume). At the middle of resuscitation we subcutaneously injected ER-α agonist propyl pyrazole triol (PPT; 5 μg/kg), ER-β agonist diarylpropionitrile (DPN; 5 μg/kg), estrogen (50 μg/kg), or ER antagonist ICI 182,780 (150 μg/kg). Two hours after resuscitation, we isolated keratinocytes, stimulated them with lipopolysaccharide for 24 h (5 μg/mL for maximum cytokine production), and measured the production of interleukin (IL)-6, IL-10, IL-12, and TNF-α and the activation of MAPK. Keratinocyte cytokine production markedly increased and MAPK activation occurred following trauma-hemorrhage but were normalized by administration of estrogen, PPT, and DPN. PPT and DPN administration were equally effective in normalizing the inflammatory response of keratinocytes, indicating that both ER-α and ER-β mediate the salutary effects of estrogen on keratinocytes after trauma-hemorrhage.

Address correspondence and reprint requests to Irshad H Chaudry, Center for Surgical Research, University of Alabama at Birmingham, G094 Volker Hall, 1670 University Boulevard, Birmingham, AL, 35294-0019. Phone: (205) 975-2195; Fax: (205) 975-9719; E-mail: Irshad.Chaudry@ccc.uab.edu.
Submitted June 4, 2008; Accepted for publication August 18, 2008; Epub (www.molmed.org) ahead of print August 20, 2008.
antly ER-β, and some tissues having both (19–21).

Skin, the largest immune organ of the body, is also influenced by estrogen. Studies have shown the delay in wound healing observed in elderly patients of both sexes can be significantly improved by the application of estrogen at the wound site (22,23). The presence of ERs in human skin has also been demonstrated (24). These studies, however, used whole skin homogenate and did not distinguish between the different cellular components of the skin or between the different ERs. Studies using fetal human skin have shown that both ER-α and ER-β are expressed in human skin at mid-gestation (25). Verdiere-Sevrain et al. have also shown that human keratinocytes express both ER-α and ER-β (26).

We previously showed that trauma-hemorrhage induces a keratinocyte inflammatory response and that administration of estrogen following trauma-hemorrhage normalizes the inflammatory response of keratinocytes (27). Although the ER-α and ER-β subtypes of ER are known to exist, it remains unknown which of the two receptors is responsible for producing the salutary effects of estrogen on epidermal keratinocytes following trauma-hemorrhage. Accordingly, we investigated the roles of ER-α and ER-β in estrogen-mediated salutary effects on the epidermal keratinocytes following trauma-hemorrhage.

MATERIALS AND METHODS

Animals

Inbred male C3H/HeN mice (Charles River Laboratories, Wilmington, MA, USA), 6 wks of age [body weight (BW) 24–27 g] were used in this study. The mice were allowed to acclimatize in the animal facility for at least 1 wk prior to experimentation. All procedures were approved by the Institutional Animal Care and Use Committee of the University of Alabama at Birmingham and were performed in accordance with the guidelines set forth in the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals by the National Institutes of Health.

Trauma-Hemorrhage Procedure

Mice were fasted overnight but allowed free access to water. The animals were anesthetized with isoflurane (Minrad, Bethlehem, PA, USA) and restrained in a supine position. A midline laparotomy (2 cm) was performed, which was closed in two layers with sutures (Ethilon 6/0; Ethicon, Somerville, NJ, USA). Both femoral arteries and the right femoral vein were then cannulated with polyethylene 10 tubing (Clay-Adams, Parsippany, NJ, USA). The areas of the incisions were bathed with lidocaine to prevent discomfort to the animals. Blood pressure was measured via one of the arterial lines using a blood pressure analyzer (Digi-Med, Louisville, KY, USA). Within 10 min after animals had awakened, they were bled through the arterial catheter until their mean arterial blood pressure reached 35 ± 5 mmHg, which was maintained for 90 min. Mice then received estrogen (50 μg/kg BW), or an equal volume and concentration of vehicle (cyclodextrin), PPT (5 μg/kg BW), DPN (5 μg/kB BW), and/or ICI 182,780 (ICI; 150 μg/kg BW) subcutaneously at the middle of resuscitation. We have used these doses in our previous studies and found them effective in protecting both immune and other organ function following trauma-hemorrhage (5,15,18,19,21,27).

The animals were resuscitated by administration via the venous line of Ringer’s lactate at four times the shed blood volume. After the catheters were removed, the incisions were closed, and the animals were returned to their cages. Sham-operated animals underwent the same surgical procedures but were neither hemorrhaged nor resuscitated (28).

Preparation of Keratinocytes

Epidermal sheet isolation. The mice were anesthetized at 2 h after resuscitation and the skin was shaved. Longitudinal strips (about 5 strips, each 0.5 cm wide) of skin were removed and the excess fat removed. The skin strips were then digested in Dispase II-RPMI solution, 0.5% (Roche Cat #10165859; Indianapolis, IN, USA) for 30 min at 37°C in a shaker at 20 side-to-side movements/ min. Following this, the strips were transferred to RPMI solution containing 10% fetal bovine serum (FBS) and kept on ice. The wet strips were then transferred to a Petri dish, dermis side down; the end of the dermis was secured with tweezers and the epidermis was separated from the dermis by use of a set of tweezers.

Keratinocyte isolation. Keratinocytes were isolated by use of the method described previously (29) with some modification. Epidermis sheets were floated, dermis-side down, in 20 mL of 0.15% trypsin solution incubated at 37°C and in a shaker at 20 side-to-side movements/min with agitation every 5 min for 45–50 min. In the last 30 min, 2 μL/mL of DNAase was added to the trypsin solution and vigorously pipetted for a few minutes to help break up the cells. The cells were filtered through a 250-μm sieve into a tube containing equal volume of RPMI supplemented with FBS and antibiotics. Following this, the cells were centrifuged for 5 min at 290g (1200 rpm) at 4°C, the supernatant was discarded, and the pellet was resuspended in 20 mL of 0.002% DNAase and culture medium. The suspension was allowed to sit for a few minutes, then the cells were filtered through a 250-μm sieve into a Petri dish. The cells were then passed through a 26-gauge needle and centrifuged for 5 min at 290g (1200 rpm) at 4°C. The supernatant was discarded, and cells were resuspended in 10 mL of keratinocyte serum-free growth medium (Gibco Cat #10725-018; Carlsbad, CA, USA). Trypan blue staining of the isolated cells from different groups (that is, sham, trauma-hemorrhage, and estrogen-treated) showed the typical keratinocyte morphology with viability greater than 95%. Furthermore, there were no significant changes in keratinocyte numbers in any group. The attached cells were allowed to grow for 24 h in
keratinocyte growth medium. The keratinocytes thus obtained were cultured in the presence or absence of 5 μg/mL lipopolysaccharide (LPS) (Escherichia coli, 055:B5; Sigma Chemical Co. St. Louis, MO, USA) for the measurement of various parameters as listed below. It should be noted that the process of epidermal isolation and keratinocyte processing may serve as an additional cellular stressor. Although the keratinocytes may be stressed following isolation, the same stress was also applied to the sham animals. We also understand that LPS acts as a cellular stressor; however, we selected the dose of LPS used in this study (5 μg/mL) after performing a dose-response study in which LPS was used at 100 ng/mL, 1 μg/mL, 5 μg/mL, and 10 μg/mL (data not shown). The results showed that keratinocytes responded poorly when they were stimulated with LPS at concentrations of 100 ng/mL and 1 μg/mL, and that optimal cytokine production by keratinocytes was achieved when they were stimulated with 5 μg/mL for 24 h.

Cell extract preparation. Keratinocyte cell extracts were prepared for the measurement of MAPK. In brief, the adherent keratinocyte cells were stimulated with 5 μg/mL LPS for 30 min and lysed with 60 μL/3 × 10^5 cells of ice-cold lysis buffer (150 mM NaCl, 1 mM MgCl₂, 50 mM HEPES, 1 mM EDTA, 0.5% Triton x-100, 10% glycerol, 200 μM sodium orthovanadate, 100 mM sodium fluoride, 10 mM sodium pyrophosphate, 200 μM phenylmethylsulfonyl fluoride, glycerol, Triton X-100, and deionized water) for 60 min at 4°C. Cell lysates were centrifuged at 9,600g for 10 min at 4°C; supernatants were stored at –80°C until used for Western blot analysis.

Western Blot Analysis
Cell extracts (15 μg protein) were electrophoretically separated onto 10% sodium dodecyl sulfate-polyacrylamide gels as described previously (27). Proteins were electroblotted to Immobilon-P membranes (Healthcare, Waukesha, WI, USA) by use of a Semidry Transblot System (Bio-Rad, Hercules, CA, USA) at 11 V for 45 min. Membranes were then blocked for 2 h at room temperature with 5% nonfat dry milk and incubated overnight at 4°C with antibodies against phospho-p38, phospho-ERK, phospho-JNK, non-phospho-p38, non-phospho-ERK, and non-phospho-JNK (Cell Signaling Technology, Beverly, MA, USA) diluted 1:1000 in Tris-buffered saline with Tween 20 containing 0.5% nonfat dry milk. The membranes were then incubated for 1 h with goat anti-rabbit or goat anti-mouse secondary antibody (diluted 1:2000), and the protein bands were detected with an enhanced chemiluminescence reagent followed by exposure to Biomax Light Film. After the films were developed, the density of the bands was determined using Ambis Optic Imaging System (GE Health Care, Chalfont St Giles, UK).

Cytokine Analysis
Keratinocytes were cultured with or without 5 μg/mL LPS for 24 h, and the supernatants were collected for cytokine measurement [interleukin (IL)-6, IL-10, IL-12, and TNF-α] using a cytometric bead array according to the manufacturer’s instructions (BD Biosciences, San Diego, CA, USA) and as described previously (30). We incubated 50 μL of mixed capture beads with 50 μL of supernatant and 50 μL phycoerythrin detection reagents for 2 h at room temperature. The immunocomplexes were then washed and analyzed by use of an LSRII flow cytometer (BD Biosciences). Data processing was carried with a FACS Diva and BD cytometric bead array software.

Statistics
Statistical analysis was performed with Sigma-Stat computer software (SPSS, Chicago, IL, USA). We performed comparison between groups by using one-way ANOVA followed by Tukey’s test. A P value of less than 0.05 was considered to be statistically significant for all analyses.

RESULTS

Effects of ER Antagonist ICI on Estrogen-Mediated Cytokine Production by Epidermal Keratinocytes
Mice subjected to trauma-hemorrhage had significant increase in keratinocyte cytokine (IL-6, IL-10, IL-12, and TNF-α) production compared with sham-treated mice. Administration of estrogen following trauma-hemorrhage normalized cytokine production under those conditions; however, coadministration of ICI along with estrogen blocked the salutary effect of estrogen on keratinocytes following trauma-hemorrhage (Figure 1).

Effect of ER Antagonist ICI on the Effects of Estrogen on MAPK Activation in Keratinocytes following Trauma-Hemorrhage
Significant increases in activation of p38, ERK, and JNK (MAPK) protein were evident in mice after trauma-hemorrhage compared with sham-treated mice (Figure 2). Estrogen significantly decreased the activation of MAPK proteins following trauma-hemorrhage; however, ICI blocked the beneficial effects of estrogen on MAPK activation (see Figure 2).

Expression of ER-α and ER-β on Epidermal Keratinocytes
Using mouse monoclonal ER-α and ER-β antibodies, we examined the expression of ER-α and ER-β on keratinocytes following trauma-hemorrhage. Trauma-hemorrhage significantly decreased ER-α and ER-β expression; however, administration of estrogen, PPT, and DPN normalized the expression of ER-α and ER-β in keratinocytes (Figure 3).

Effect of PPT and DPN on Keratinocyte Cytokine Production
Production of keratinocyte cytokines (IL-6, IL-10, IL-12, and TNF-α) was significantly increased following trauma-hemorrhage. However, administration of PPT, DPN, or estrogen following trauma-hemorrhage normalized the cytokine production by keratinocytes (Figure 4).
Effects of PPT and DPN on p38, JNK, and ERK Phosphorylation in Keratinocytes

Trauma-hemorrhage significantly increased the phosphorylation of p38, ERK, and JNK in keratinocytes; however, administration of estrogen, PPT, or DPN following trauma-hemorrhage normalized p38, JNK, and ERK phosphorylation in epidermal keratinocytes (Figure 5).

DISCUSSION

The epidermis is an important site of host interactions and keratinocytes, the main cell type in the epidermis (> 90%) (31,32). Epidermal keratinocytes differ from other immune cells because they not only form a physical barrier, they also initiate and regulate the cutaneous inflammation and immune response by producing a number of cytokines.

The present results show that administration of ER-α agonist PPT and ER-β agonist DPN or estrogen following trauma-hemorrhage prevented the increased production by epidermal keratinocytes of proinflammatory cytokines IL-6 and TNF and antiinflammatory cyto-
Moreover, PPT, DPN, or estrogen administration after trauma-hemorrhage prevented the activation of p38, ERK1/2, and JNK in keratinocytes. Our previous studies have shown that trauma-hemorrhage induces an inflammatory response in epidermal keratinocytes, as evidenced by an increase in the production of IL-6, IL-10, and TNF-α (27). However, administration of estrogen following trauma-hemorrhage normalized keratinocyte cytokine production under those conditions. It is thus tempting to suggest that the decrease in proinflammatory IL-6 and antiinflammatory IL-10 might balance each other off with essentially no subsequent response. Whether or not this is indeed true remains to be determined.

A number of studies from our and other laboratories have shown that the female sex hormone estrogen has salutary effects on immune response following trauma-hemorrhage (7,8,12,19,28,30, 33,34). It is well known that estrogen mediates its effect via receptors ER-α and ER-β. The aim of the present study was to test the hypothesis that the immunoprotective effect of estrogen on epidermal keratinocytes following trauma-hemorrhage was ER-dependent. Accordingly, male mice were subjected to trauma-hemorrhage or sham operation and treated with the specific ER antagonists PPT or DPN. The effects of these inhibitors on cytokine production by keratinocytes were examined. Figure 4A shows the effects of PPT on cytokine production by keratinocytes after trauma-hemorrhage. As can be seen, PPT significantly reduced the production of IL-6, IL-10, IL-12, and TNF-α by keratinocytes after trauma-hemorrhage. The results shown in Figure 4B-C confirm that DPN also has a similar effect on cytokine production by keratinocytes after trauma-hemorrhage. Figure 4D shows the effects of estrogen on cytokine production by keratinocytes after trauma-hemorrhage. As can be seen, estrogen significantly reduced the production of IL-6, IL-10, IL-12, and TNF-α by keratinocytes after trauma-hemorrhage. The results shown in Figure 4E-F confirm that estrogen also has a similar effect on cytokine production by keratinocytes after trauma-hemorrhage. The results shown in Figure 4G-H confirm that estrogen also has a similar effect on cytokine production by keratinocytes after trauma-hemorrhage. The results shown in Figure 4I-J confirm that estrogen also has a similar effect on cytokine production by keratinocytes after trauma-hemorrhage. The results shown in Figure 4K-L confirm that estrogen also has a similar effect on cytokine production by keratinocytes after trauma-hemorrhage. The results shown in Figure 4M-N confirm that estrogen also has a similar effect on cytokine production by keratinocytes after trauma-hemorrhage. The results shown in Figure 4O-P confirm that estrogen also has a similar effect on cytokine production by keratinocytes after trauma-hemorrhage.

Figure 3. Expression of ER-α (A) and ER-β (B) on epidermal keratinocytes following trauma-hemorrhage. The blots were stripped and reprobed for β-actin for equal protein loading in various lanes. Blots from six animals in each group were analyzed using densitometry. Densitometric values were normalized to β-actin and are shown in bar graphs as mean ± SEM. *P < 0.05 versus all other groups.

Figure 4. Effects of propyl pyrazole (PPT) and diarylpropionitrile (DPN) on production of cytokines IL-6 (A), IL-10 (B), IL-12 (C), and TNF-α (D) by keratinocytes after trauma-hemorrhage. Keratinocytes were isolated from sham animals and trauma-hemorrhage animals treated with vehicle, DPN, PPT or estrogen. The isolated keratinocytes were stimulated with LPS for 24 hr, supernatants were harvested, and IL-6, IL-10, IL-12 and TNF-α levels in the supernatants were analyzed by use of a cytokine bead array. Data are mean ± SEM from six animals in each group. *P < 0.05 compared with all other groups.
Our results showed that the salutary effects of estrogen on keratinocytes were blocked if ICI was administered along with estrogen. ICI, via its active metabolites, acts as a pure antagonist of both ER-α and -β (35). ICI binds to ERs competitively, and its binding leads to degradation and downregulation of ERs. Furthermore ICI administration is followed by multiple changes in the ERs, which contribute to the blockade of estrogen action. These changes include impaired dimerization, increased turnover, and disrupted nuclear localization of the ERs (14).

Our present results indicate that at 2 h following trauma-hemorrhage, cytokine production and MAPK activation in keratinocytes from male mice were markedly increased. Administration of a single dose of estrogen during resuscitation attenuated the increase in these inflammatory markers. However, keratinocytes from animals treated with ICI and estrogen following trauma-hemorrhage displayed depressed immune function and thus the salutary effects of estrogen were blocked in those animals. These findings are in line with previous studies from our laboratory, which showed that administration of ICI blocked the salutary effects of estrogen in heart tissue (17). Because the ER antagonist depressed the estrogen-mediated keratinocyte immune responses, the results indicate that the protective effects of estrogen on keratinocyte immune response following trauma-hemorrhage are mediated via ERs.

There are two known ER subtypes, ER-α and ER-β. Because the two subtypes of ERs have different tissue distribution, it appears important to determine which subtype of ER contributes to the effect of estrogen in keratinocytes. In this study, we used the selective agonists for ER subtypes to determine which subtype has a predominant role in the effects of estrogen on immune cell cytokine production following trauma-hemorrhage. PPT, a selective ER-α agonist, binds to ER-α with 410-fold higher affinity than ER-β (36). In contrast, DPN, a selective ER-β agonist, has 70-fold higher relative binding affinity and 170-fold higher relative estrogenic potency in transcription assays with ER-β than with ER-α (2).

Nonetheless, despite the specificity of the ER-α and ER-β agonist, the possibility that there may be some overlap in these stimuli cannot be ruled out. Our present

Figure 5. Effects of propyl pyrazole triol (PPT) and diarylpropionitrile (DPN) on keratinocytes p38 (A), ERK (B), and JNK (C) phosphorylation following trauma-hemorrhage. The blots were stripped and reprobed for p38, ERK, and JNK total protein contents in various lanes. Blots from six animals in each group were analyzed using densitometry. Densitometric values for phosphorylation were normalized to p38, ERK, and JNK protein and are shown in bar graph as mean ± SEM. *P < 0.05 compared with all other groups.
results showed that administration of ER-α agonist PPT and ER-β agonist DPN following trauma-hemorrhage significantly attenuated cytokine production by keratinocytes. These results therefore indicate that the ER-α agonist and ER-β agonist were both as effective as estrogen in preventing the increase in keratinocyte cytokine production following trauma-hemorrhage.

Although the present findings showed the salutary effects of PPT and DPN in keratinocyte cytokine production after trauma-hemorrhage, the precise mechanism by which this occurs remains unknown. MAPKs play an important role in the regulation of macrophage activation as well as other functions (4,37–42). Moreover, the production of various cytokines by macrophages involves MAPK signal transduction pathways (38,43–46). The present results demonstrate that p38, signal transduction pathways (38,43–46).

Moreover, the production of various cytokines by macrophages involves MAPK signal transduction pathways (38,43–46). The present results demonstrate that p38, signal transduction pathways (38,43–46). The present results demonstrate that p38, signal transduction pathways (38,43–46). The present results demonstrate that p38, signal transduction pathways (38,43–46). The present results demonstrate that p38, signal transduction pathways (38,43–46). The present results demonstrate that p38, signal transduction pathways (38,43–46). The present results demonstrate that p38, signal transduction pathways (38,43–46). The present results demonstrate that p38, signal transduction pathways (38,43–46).

It can be argued that the present study used measurements at a single time point, that is, at 2 h after treatment, and thus it remains unclear whether the salutary effects of estrogen, PPT, and DPN on cytokine and MAPKs are sustained for a longer period of time after treatment. Although a later time point was not examined in this study, our previous studies have shown that if the improvement in cell and organ function by any pharmacological agent is evident at 2, 5, or 24 h after treatment, those salutary effects are sustained for prolonged intervals and they also improve the survival of animals (8,28,33). Thus, it would appear that the salutary effects of estrogen, PPT, and DPN on keratinocyte cytokine release and MAPK activation would be evident even if one measured those effects at another time point after trauma-hemorrhage and resuscitation.

ACKNOWLEDGEMENTS

This work was supported by NIH grant R01 GM37127. The authors thank Dr. Takashi Kawasaki for his kind help with the trauma-hemorrhage procedure and Bobbi Smith for her assistance in manuscript preparation.

REFERENCES

TRIUMA-HEMORRHAGE AND ESTROGEN RECEPTOR

MOEINPOUR ET AL. | MOL MED 14(11-12)689-696, NOVEMBER-DECEMBER 2008

39. Wang M, Tsai BM, Reiger KM, Brown JW, Mel-
43. Dong C, Davis RJ, Flavell RA. (2002) MAP kinases in the immune response. *Annu. Rev. Im-
munol.* 20:35–72.