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Glaucoma-Induced Degeneration of Retinal Ganglion Cells
Prevented by Hypoxic Preconditioning: A Model of
Glaucoma Tolerance
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Like all cells, neurons adapt to stress by fransient alterations in phenotype, an epigenetic response that forms the basis for pre-
conditioning against acute ischemic injury in the central nervous system. We recently showed that a modified repetitive hypoxic
preconditioning (RHP) regimen significantly extends the window of ischemic tolerance to acute retfinal ischemic injury from days
to months. The present study was undertaken to determine if this uniquely profracted neuroprotective phenotype would also con-
fer resistance to glaucomatous neurodegeneration. Retinal ganglion cell death at somatic and axonal levels was assessed after
both 3 and 10 wks of sustained infraocular hypertension in an adult mouse model of inducible, open-angle glaucoma, with or
without RHP before intraocular pressure elevation. Loss of brn3-positive ganglion cell soma affer 3 wks of experimental glaucoma,
along with increases in several apoptotic endpoints, were all significantly and robustly attenuated in mice subjected to RHP Soma
protection by RHP was also confirmed after 10 wks of infraocular hypertension by brn3 and SMI32 immunostaining. In addition,
quantification of axon density in the postlaminar optic nerve documented robust preservation in RHP-treated mice, and neurofil-
ament immunostaining also revealed preconditioning-induced improvements in axon integrity/survival in both retina and optic
nerve after 10 wks of experimental glaucoma. This uniquely protracted period of phenotypic change, established in retinal gan-
glion cells by the activation of latent antiapoptotic, prosurvival mechanisms at both somatic and axonal levels, reflects a novel
form of inducible neuronal plasticity that may provide innovative therapeutic targets for preventing and treating glaucoma and
other neurodegenerative diseases.
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INTRODUCTION

Glaucoma is the second leading cause
of blindness worldwide, and its inci-
dence is only expected to increase (1).
Current pharmacological treatments de-
signed to lower intraocular pressure
(IOP) in primary open-angle glaucoma
have shown some efficacy in delaying or
preventing the onset of disease (2), but
many eligible patients do not receive reg-
ular treatment or derive significant bene-
fit from this approach, and many individ-
uals develop glaucoma in the absence of

significant intraocular hypertension.
Thus, neuroprotective-based therapeutic
approaches to prevent or slow the pro-
gressive loss of retinal ganglion cells
(RGCs) that characterize this neuropathy

have received considerable attention (3,4).

By leveraging the innate ability of
cells to adapt to stressful conditions, a
preconditioning-based approach to pro-
tecting RGCs from glaucomatous injury
could provide therapeutic benefit. To
date, however, epigenetic adaptations in
the central nervous system (CNS) of ex-
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perimental animals in response to a
single preconditioning stimulus are very
short-lasting, and “tolerance” has only
been documented for acute injury. On
the basis of our previous findings in
adult mice that retinal ischemic tolerance
could be extended from days to weeks
by preconditioning in an intermittent, re-
peated manner before the insult (5,6), the
present study was undertaken to test the
hypothesis that inducing such a pro-
tracted window of augmented cellular
viability might also prevent or amelio-
rate the progressive loss of RGC soma
and axons that occurs in glaucoma.

MATERIALS AND METHODS

Experimental Groups

Two main groups of mice were stud-
ied: one group included mice sacrificed
after 3 wks of sustained IOP elevation
induced in one eye, used for quantify-

MOL MED 18:697-706, 2012 | ZHU ET AL. | 697



PRECONDITIONING FOR INNATE GLAUCOMA PROTECTION

ing soma survival and apoptotic mark-
ers, along with quantification of axon
density in the postlaminar optic nerve.
A second group was sacrificed after

10 wks of intraocular hypertension, and
soma survival, along with axon in-
tegrity in both the intraretinal nerve
fiber layer and in the postlaminar optic
nerve, was assessed. Randomly matched
groups receiving repetitive hypoxic
preconditioning (RHP) before IOP-
elevating surgery were studied, as well
as randomly matched controls without
IOP-elevating surgery that included
sham glaucoma mice (subjected to all
anesthesia treatments and IOP measure-
ments, but not episcleral vein ligation)
and/or naive mice; the contralateral eye
served as the control for most endpoints
examined.

Mouse Model of Experimental
Glaucoma and RHP

All experimental methods and animal
care procedures were conducted in ac-
cordance with NIH and ARVO guide-
lines for the care and use of laboratory
animals and were approved by the Ani-
mal Studies Committee at Washington
University. We used adult (10-12 wks
old) male C57Bl1/6] mice (20-30 g; Jack-
son Laboratory), randomized to 3- or
10-wk groups with respect to the dura-
tion of intraocular hypertension studied.
Intraocular hypertension was induced by
blocking the aqueous drainage of the eye
secondary to repeated ligation of epi-
scleral veins. In brief, mice were anes-
thetized with ketamine (87 mg/kg in-
traperitoneally [i.p.]) and xylazine
(13 mg/kg i.p.), followed by topical
application of 0.5% proparacaine hydro-
chloride. In one eye, the conjunctiva and
Tenon’s capsule were incised to expose
the episcleral veins, three to five of
which over 300 degrees of the limbus
were ligated with 11-0 nylon suture
(Alcon Surgical) under a dissecting mi-
croscope. Each vein was sutured at two
points and then severed in between.
Core body temperature was maintained
at 37°C throughout the procedure via a
thermoregulated heating pad. Additional

ligations were performed at weekly in-
tervals thereafter if IOP did not remain
elevated. Antibiotic ointment was ap-
plied topically after each surgery; mice
recovered in their home cages during the
3- or 10-wk period of elevated IOP. Ran-
domly matched animals destined for
each glaucoma cohort were exposed to
RHP before the very first IOP-elevating
surgery as follows: RHP involved expos-
ing conscious mice for 2 h to a single pe-
riod of systemic hypoxia (11% oxygen)
three times per week for two consecutive
weeks (5). The initial episcleral vein liga-
tion surgery was then performed 3 d
after the last hypoxic exposure.

Intraocular Pressure Measurements

IOP was measured before and at weekly
intervals after the induction of intraocular
hypertension by the TonoLab Rebound
Tonometer system (Colonial Medical Sup-
ply, Franconia, NH, USA) following the
manufacturer’s recommendations and as
described by others (7). See the supple-
mental materials for more details.

Clinical Symptomology Scoring

Several clinical symptoms common to
human glaucoma (corneal limbal vessel
dilation, anterior chamber cloudiness,
corneal haze secondary to edema, hy-
phema and corneal bubbles) were scored
weekly in a semiquantitative fashion to
monitor and evaluate the response of the
entire eye to the repeated episcleral vein
ligation and the ongoing elevation in IOP
and RHP. See the supplemental materials
for details.

RGC Soma Survival Quantification
After 3 or 10 wks of elevated IOP, both
untreated and RHP-treated animals were
euthanized to quantify surviving RGC
soma by quantification of brn3 immuno-
positive cells in peripheral regions of
flat-mounted retinas, as described previ-
ously by us and others (8). See the sup-
plemental materials for details.

RGC Axonal Survival Quantification
Axon integrity and survival was docu-
mented by two methods and in two loca-
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tions. In the 3-wk glaucoma group, we
quantified by light microscopy the den-
sity of morphologically normal axons in
epon-embedded sections of postlaminar
optic nerve cross-sections using
p-phenylenediamine (9). In the 10-wk
group, axon integrity and dropout was
also assessed by confocal immunofluores-
cence microscopy within both the flat-
mounted retina and the postlaminar optic
nerve by SMI32 staining for the nonphos-
phorylated neurofilament heavy subunit,
in conjunction with glial fibrillary acidic
protein (GFAP) staining for assessing re-
active astrogliosis. Some flat-mounted
retinas were also immunostained with
SMI34 to detect the cytoskeleton-
associated, hyperphosphorylated neuro-
filament heavy subunit. Methodological
details are included in the supplementary
materials.

Immunoblotting and
Immunohistochemistry

Retinas were collected under resting
baseline conditions, immediately or 3 wks
after RHP, or 3 wks after IOP elevation, to
quantify retinal protein expression levels
by immunoblotting (5). Paraffin-embed-
ded cross-sections of retinas allowed us to
immunohistochemically identify changes
in expression and the cellular localization
of the cleaved forms of both caspase-9
and -3 at 24 h, 1 wk, and 3 wks after in-
traocular hypertension. See the supple-
mental materials for details.

Statistics

Significant differences between mea-
sures from paired eyes in the same ani-
mal and from eyes in different animal
groups were defined by nonparametric
signed-rank and rank-sum tests, respec-
tively. Nonparametric analysis of vari-
ance on ranks was used to identify quad-
rant-based differences within the retina
and optic nerve. IOP comparisons among
and between animals over the 3- and
10-wk periods of intraocular hyperten-
sion were defined by a repeated-
measures linear model analysis using the
mixed procedure of SAS (v9.2). P < 0.05
was accepted as significant.



All supplementary materials are available
online at www.molmed.org.

RESULTS

IOP Changes in Our Model of Induced
Glaucoma

Induction of experimental glaucoma
by repeated episcleral vein ligation re-
sulted in sustained, significant (P < 0.05)
increases in IOP lasting at up to 10 wks,
as long as newly appearing veins were
ligated weekly. For both the 3- and 10-wk
cohorts, baseline IOP did not differ sig-
nificantly between the nonprecondi-
tioned and preconditioned groups or be-
tween the experimental eyes and fellow
eyes. Importantly, there was no overall
difference in the IOP levels attained in
the experimental eyes from untreated
and RHP-treated groups, nor were there
any statistically significant differences at
any given time point between the ele-
vated IOP level in each of these groups
(Figures 1A, B), indicating that RHP was
without effect on the IOP response to
episcleral vein ligation.

Clinical Symptomology: IOP Elevation
and Effects of RHP

Overall, we identified three patterns to
the clinical scores. A correlation between
the severity of symptoms and the inten-
sity and duration of IOP elevation was
expected, but the pattern of the correla-
tion differed temporally, as did the sever-
ity of the clinical response, depending on
whether the mice received prior RHP.
These findings are detailed in Supple-
mentary Table 1 and Supplementary Fig-
ures 1 and 2.

RHP Protects Retinal Ganglion Cell
Soma in Glaucoma

We first assessed whether prior RHP
would affect RGC soma death in re-
sponse to sustained intraocular hyper-
tension. Using regional analyses of reti-
nal flat mounts immunostained for the
RGC-specific antigen brn3 revealed that
mice with prior RHP exhibited signifi-
cantly higher numbers of surviving RGC
soma compared with untreated mice in
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Figure 1. IOP changes in the different groups. Temporal changes in IOP in response to
episcleral vein ligatfion in experimental eyes (filled symbols) and fellow eyes (open sym-
bols) of mice from the 3-wk (A) and 10-wk (B) cohorts. IOP from untreated control mice
(squares) and from mice treated before the initial episcleral vein ligation with RHP (circles)
are shown. Although not indicated in the graphs for clarity, IOP levels in the experimental
eyes were significantly greater at all time points than levels measured at corresponding
fimes in their fellow eyes, and significantly greater than their respective baselines at alll
fimes. Moreover, there were no significant differences in the extent of IOP elevation in the
glaucoma eyes from the untreated and RHP-tfreated groups, nor significant differences in
IOP levels between these groups in their respective fellow eyes. Baseline IOP (shown at
fime = 0) also did not differ between eyes or groups. Baseline IOP values and mean IOP
values over the 24-h-to-3-wk and 24-h-to-10-wk periods of study in the 3-wk and 10-wk
cohorts, respectively, with the N for each group (in parentheses), are provided in fabular
form (C), wherein *P < 0.05 versus baseline in the same eye.

both the 3-wk (Figure 2A) and 10-wk
(Figures 2B, C) cohorts. Specifically, in
the peripheral retina of nonprecondi-
tioned mice (n =7), 21 + 2% (P < 0.05) of
brn3-positive RGC soma were lost after
3 wks of intraocular hypertension rela-
tive to the fellow eye, but in RHP-treated
mice (n = 6), this loss of cells was pre-
vented by 91 + 9% (that is, only 2 + 2% of
brn3-positive cells were lost) (P < 0.05).
After 10 wks of experimental glaucoma,

fellow eyes) in the nonpreconditioned
animals (n = 6). However, RHP-treated
mice (n =7) only lost 3 £ 1% of brn3-pos-
itive RGC soma in identical retinal re-
gions, reflecting an 87 + 4% improvement
in survival (P < 0.05). RHP-induced pro-
tection was statistically equal across all
quadrants, but was most robust in the
temporal, superior and nasal quadrants
(data not shown). Of note, the number of
brn3-positive RGC soma in contralateral
retinas did not differ between RHP-
treated and untreated mice and were also

the magnitude of RGC soma loss had
progressed to 30 + 4% (P < 0.05 versus
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Figure 2. Total brn3-positive refinal ganglion cell soma density in peripheral retina as mea-
sured in refinal flat mounts from experimental (GL; black bars) and fellow eyes (open
bars) obtained from untreated control mice (NT) and mice treated with RHP before in-
fraocular hypertension. Results from both the 3-wk (A) and 10-wk (B, C) cohorts are
shown, including those from sham mice (shaded bar) in both groups. Representative pho-
tomicrographs of brn3-labeled RGC soma (red) in peripheral retina of untreated and
RHP-treated mice subjected to 10 wks of infraocular hypertension are also provided (C).
*P < 0.05 versus fellow eye in each group; *P < 0.05 versus glaucomatous eye in NT group;
*P < 0.05 versus respective sham. Scale bar in C = 50 um.

indistinguishable from the number of
brn3-positive RGC soma in the retinas of
sham-glaucoma mice (n = 4; Figure 2B).
Representative photomicrographs from
untreated and RHP-treated groups of
mice with 10 wks of experimental glau-
coma are shown (Figure 2C). Overall,
these findings indicate that RHP robustly
protected against RGC soma loss, even
after 10 wks of sustained IOP elevation.
Further evidence of RHP-induced RGC
soma protection was revealed by im-
munostaining retinal flat mounts with
SMI32, the dephosphorylated neurofila-
ment heavy-chain label basally expressed
by healthy RGCs (10-12), and SMI34, the
cytoskeleton-associated, hyperphospho-
rylated neurofilament heavy subunit for
which expression reflects cell injury
and/or transport dysfunction (13). In
particular, many SMI32-positive soma
were evident across the peripheral retina
of sham controls, but their density was

notably decreased, particularly in the su-
perior and nasal quadrants, after 10 wks
of glaucoma (n = 5), relative to soma
densities observed in the corresponding
retinal quadrants from controls, as well
as relative to the densities of SMI32-
positive soma noted in fellow nonglauco-
matous retinas (Figure 3). In contrast,
SMI32-positive soma density in the reti-
nas of RHP-treated mice with glaucoma
(n = 4) was indistinguishable from that
in fellow eye and sham mice (see Fig-
ure 3). With respect to SMI34, RGC soma
staining positively for this immunolabel
were only found in nonpreconditioned
glaucomatous retina (Supplementary
Figure 3).

RHP Prevents RGC Apoptosis in
Glaucoma

Given the evidence in both humans
and animal glaucoma models that RGC
soma are lost by apoptosis, we sought to
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confirm (a) that the reductions in RGC
soma densities we observed after sus-
tained IOP elevation exhibited the cardi-
nal features of apoptosis and (b) whether
RHP protected RGC soma by an anti-
apoptotic mechanism.
Immunohistochemistry for cleaved
caspase-3 (Figure 4A) and cleaved cas-
pase-9 (Figure 4B) revealed occasional,
but prominent, increases in immunoreac-
tivity for both in the cytoplasm of cells in
the ganglion cell layer of mice with
3 wks of experimental glaucoma (n = 4-5),
that in each case always colocalized
with neuronal nuclei (NeuN)-positive
cells, indicative of RGCs (Figure 4A).
Neither cleaved caspase-3- nor cleaved
caspase-9—positive cells could be found
in fellow eyes or in nonglaucomatous
controls (n = 3—4, data not shown). In ex-
aminations of glaucomatous retinas after
24 h or 1 wk of intraocular hypertension,
no immunopositive cells for either en-
zyme could be found in the 24-h sam-
ples; and in the 1-wk samples, only
rarely could we find a cleaved caspase-3
immunopositive cell (data not shown).
By immunoblotting, we also measured a
70 + 22% increase (P < 0.05), relative to
normal controls (n = 6), in cleaved
caspase-9 levels in the retinas of mice
with 3 wks of elevated IOP (n = 6) (Fig-
ure 4C). In addition, we measured a 21 +
10% decrease in the bcl-2 /bax ratio (Fig-
ure 5) in retinas from the 3-wk intraocu-
lar hypertension cohort (n = 5), relative
to that measured in retinas from matched
control mice with normal IOP (n = 8).
Each of the aforementioned indices of
apoptotic RGC death was significantly
attenuated or reversed in animals with
RHP. Specifically, we never found
cleaved caspase-3— or cleaved caspase-9—
immunopositive cells in the ganglion
cell layer (or any other layer) of RHP-
treated mice with 3 wks (or 1 wk or 24 h)
of intraocular hypertension (n = 4; Fig-
ures 4A, B). In parallel with our im-
munohistochemistry findings, cleaved
caspase-9 protein expression levels mea-
sured by immunoblot were no longer el-
evated (P < 0.05) in the glaucomatous
retinas of RHP-treated mice (n = 6);



rather, the protein was expressed at a
level that was 21 + 22% below, but not
significantly different from, normal IOP
controls (Figure 4C). In addition, the reti-
nas of RHP-treated mice with elevated
IOP (n = 5) exhibited significantly higher
(P < 0.05) bel-2/bax ratios than glauco-
matous retinas from mice without RHP
(Figure 5). Moreover, measurements
made immediately after the last RHP
treatment (n = 5) and then again 3 wks
later (n = 5), both before glaucoma, re-
vealed a “priming effect” of RHP on the
expression of these apoptosis-regulating
proteins, with higher bcl-2 /bax ratios at
both time points (see Figure 5). Collec-
tively, these findings indicate that RHP-
induced increases in RGC soma survival
occurred secondary to a prevention
and/or reduction in apoptotic death of
RGCs, even in the face of an equivalent
magnitude and duration of intraocular
hypertension.

RHP Protects Retinal Ganglion Cell
Axons in Glaucoma

To determine if the soma survival-
promoting effects of RHP were also evi-
dent in RGC axons, we quantified axonal
density in postlaminar optic nerve cross-
sections. Three weeks of sustained IOP el-
evation led to a 32 + 5% total loss (P <
0.05) of RGC axons in these mice (n = 6)
relative to the fellow optic nerve (Fig-
ure 6B). The glaucomatous optic nerve
was characterized by a morphological
pattern of disrupted and sometimes
swollen axon bundles containing
shrunken, degenerating and missing
axons, typically concomitant with disrup-
tions in myelin sheath integrity and a
dark axoplasm (Figure 6A). In addition,
more extensive and heterogeneously
shaped astrocyte processes comprised a
much greater proportion of nerves from
glaucomatous eyes. Whereas axonal loss
between quadrants was not significantly
different, the inferior quadrant trended
toward the least amount of loss relative
to the other three quadrants (data not
shown). In RHP-treated mice (n = 5), ax-
onal morphology appeared similar to that
in the fellow eye (axoplasms were clear,
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Figure 3. Confocal fluorescent immunohistochemistry for the nonphosphorylated neurofil-
ament heavy-label SMI32 in retinal flat mounts from the experimental eye (GL) and re-
spective fellow eye of representative untreated mice (NT) with 10 wks infraocular hyper-
tension, mice receiving RHP before induction of 10 wks of infraocular hypertension, and
sham controls. For each retina shown, superior regions are represented in panels A and B,
Eand Fland J,M and N, and Q and R, and respective inferior regions are C and D,

G and H,Kand L, O and P and S and T. Temporal regions are A and C, F and H, | and K,

N and P and Q and S, and nasal regions are Band D, E and G, J and L, M and O, and

R and T. Scale bar is 200 um. The histogram in panel U shows the quantified results for
SMI32 fluorescence intensity across all quadrants, in all animals, normalized to fellow eyes
in each group. *P < 0.05 versus GL retina in the NT group.

myelin sheaths were uninterrupted and
intact axon fascicles were interspersed
with normal-looking, stellate-shaped as-
trocytes), and 78 + 5% of the total axonal
loss was prevented (that is, only 8 + 2%
of all RGC axons were lost in mice with
RHP [P < 0.05]; see Figure 6B). Again, no
significant differences in the extent of
RHP-induced protection was noted at the
quadrant level, but protection in superior,
inferior and temporal quadrants trended

most robust (data not shown). As with
brn3-positive soma staining, RHP was
without effect on axon density or any no-
table changes in optic nerve morphology
(see Figure 6A), on the basis of compar-
isons between the fellow optic nerve of
RHP-treated mice and the fellow optic
nerve of nonpreconditioned mice.

The effect of RHP on RGC axonal via-
bility in the postlaminar optic nerve was
also investigated in mice with 10 wks of
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Figure 4. Immunohistochemical localization of the cleaved forms of caspase-3 (A) and
caspase-9 (B) to retinal ganglion cells in retinas from untreated mice with 3 wks of in-
fraocular hypertension. Caspases (green), NeuN (red), 4',6-diamidino-2-phenylindole
(DAPI) nuclear counterstain (blue) and merged images (yellow) are shown for each cas-
pase, in the experimental glaucoma eye (GL) and in the fellow eye from untreated (NT)
mice, and from mice with RHP before intraocular hypertension. Arrowheads in the GL eye
of the NT group show immunopositive cleaved caspase-3 and -9 cells that colocalize with
NeuN immunopositive cells. GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner
plexiform layer. Scale bar in each = 20 um. (C) Western blot results for cleaved caspase-9
protein. On the left are quantified resulfs in histogram form (normalized to sham controls)
and on the right are representative blots from each experimental group, using p-actin as
a loading control. *P < 0.05 versus the corresponding eye in the control group or NT
group. *P < 0.05 versus the NT group.
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Figure 5. Retinal expression of bcl-2 and
bax protein levels (shown as ratio) from
mice sacrificed immediately or 3 wks after
RHP and from mice with 3 wks of experi-
mental glaucoma without (NT) or with
RHP; all expression levels are normalized to
those measured in unfreated controls.
Representative blots of the respective pro-
teins, each with p-actin as a loading con-
trol, are shown below the histogram. *P <
0.05 versus the corresponding eye in the
control group or NT group.

glaucoma. As shown in representative
photomicrographs (Figure 7), relative to
the contralateral eye, clear reductions in
the density of SMI32-positive axons in
cross-sections of postlaminar optic nerve
were evident in untreated mice (n = 4).
Concomitantly, we consistently observed
an increase in the intensity and the re-
gional coverage of GFAP-positive astro-
cytes, the latter secondary to hypertro-
phy of their cell bodies and processes,
and their filling in of the spaces created
by axonal degeneration. Generally, more
SMI32-positive axonal loss was evi-
denced in superior regions of the nerve
relative to inferior. However, in mice re-
ceiving RHP (n = 4), a loss of SMI32-im-
munopositive axons was not evident in
any region, and the nerve from the glau-
comatous eye looked nearly identical to
the fellow eye, and to shams, with re-
spect to both axonal and glial density
and morphology (see Figure 7). On the
basis of the contention that reductions in



SMI32-positive axon density reflect overt
axonal loss at the time of measurement
(11), and taken collectively with our
3-wk axonal quantification data, our
findings indicate that RHP exerted ro-
bust protective effects on RGC axons at
the postlaminar level of the nerve, evi-
dent after both 3 and 10 wks of sustained
intraocular hypertension.

We also examined RGC axon density
and integrity more proximally, in the
nerve fiber layer of the retina. There, we
observed an obvious loss of SMI32-
labeled axons running across the periph-
eral and mid-peripheral retina in all
quadrants in untreated mice from the
10-wk glaucoma group (n = 5). The
greatest loss was on the nasal side, and
more prominently in the superior nasal
quadrant, but there was still some loss
on the temporal side as well (Figure 3).
The integrity of axons still remaining
also appeared somewhat jeopardized,
with axonal and dendritic thinning, dis-
continuous segments and considerably
less branching. When quantified across
all quadrants, we found a 52 + 3% loss
(P = 0.063) of SMI32 + axons relative to
fellow eyes (Figure 3U). However, in
mice with prior RHP (n = 4), SMI32-
positive axonal density and integrity in
the nerve fiber layer appeared normal in
all quadrants and qualitatively were in-
distinguishable from that in both con-
tralateral retinas, as well as in retinas
from sham glaucoma mice (see Figure 3).
When quantified, axon integrity was im-
proved significantly (P < 0.05) to within
10 + 1% of that in their fellow eye (a de-
gree of protection of 81%; see Figure 3U).
Thus, the loss of proximal RGC axon seg-
ments within the nerve fiber layer in re-
sponse to 10 wks of glaucoma was also
robustly abrogated with RHP treatment.

DISCUSSION

Herein we show for the first time that
repetitive preconditioning with sublethal
hypoxia before disease onset can prevent
the subsequent neurodegeneration char-
acterizing glaucoma. The uniquely sus-
tained adaptive response to RHP ro-
bustly abrogates the ongoing apoptotic
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Figure 6. Representative photomicrographs (A) and summarized results (B) of axon densi-
fies in postlaminar optic nerve cross-sections from experimental eyes (GL) and fellow eyes
from untreated mice with 3 wks of experimental glaucoma (NT) and from mice with RHP
before 3 wks intraocular pressure elevation. *P < 0.05 versus fellow eye; *P < 0.05 versus GL
eye in NT group. (C) Schematic of optic nerve cross section illustrating 20 individual re-
gions over which axon density was determined. Scale bar in (A) = 20 um.

death of RGC soma as well as axonal
injury /loss. This novel demonstration of
“glaucoma tolerance” implies the exis-
tence of intrinsic, cytoprotective regula-
tory systems in the CNS, the protracted
activation of which can prevent or slow
both the somatic and axonal degenera-
tion associated with this disease. In turn,
these findings advocate for an expansion
of the traditional definitions of precondi-
tioning and tolerance in the CNS to in-
corporate this novel form of induced
neuroplasticity, and suggest the exciting
possibility of achieving similarly pro-
tracted periods of protection against
chronic cellular injury in other tissues.

In glaucoma, RGC axons die by mech-
anisms distinct from those governing the
demise of the soma (11,14-20). Thus, we
measured RGC viability at both somatic
and axonal levels in the present study,
not to elucidate primary and secondary
injury events per se, but to demonstrate
the potential pan-cellular, multifactorial
protective effects of RHP. With respect to
RGC soma, RHP robustly attenuated the
20-30% progressive loss of RGCs we
documented by brn3 immunolabeling
during the initial 3-10 wks of intraocular
hypertension. The brn3-positive cell bod-
ies we quantified comprise a specific, but

relatively large, subpopulation of RGCs
that express this RGC-specific gene prod-
uct (8); displaced amacrine cells are not
identified with this immunolabel. Al-
though the relative susceptibility to glau-
comatous injury of RGCs carrying the
brn3 gene compared with other RGC
subpopulations is unclear, the magnitude
of RGC soma loss in our model was sim-
ilar to that independently measured in
other inducible mouse glaucoma models
(21-24). RHP-induced soma protection
was also confirmed by immunolabeling
for the nonphosphorylated neurofila-
ment heavy-chain marker SMI32. The
nuclear condensation of the label, trunca-
tion of positively stained dendrites and
somatic shrinking we witnessed in non-
preconditioned glaucomatous retinas,
described previously for the DBA /2]
model (11), defines an RGC soma pheno-
type that was not observed in RHP-
treated mice. Finally, our finding of hy-
perphosphorylated SMI34-positive RGC
soma, axons and dendrites only in the
glaucomatous retinas of nonprecondi-
tioned mice is consonant with similar
soma labeling in mouse RGCs discon-
nected from their distal axons in the
DBA /2] model (19) and in rat RGCs after
optic nerve crush (10); the shifting of
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Figure 7. Confocal fluorescence immunohistochemistry in representative postlaminar
optic nerve cross-sections from eyes with 10 wks experimental glaucoma (GL), and fellow
eyes, in unfreated mice (NT; upper two rows) and mice with RHP (lower two rows). Shown
left to right, by columns, are SMI32 (green), GFAP (red) and 4',6-diamidino-2-phenylindole
(DAPI) (blue) and two merged photo sets, with the right-most being a magnified view of
the box shown in each respective photo to ifs left. Scale bars shown = 20 um.

neurofilament phosphorylation from
axon to soma is common to many neuro-
logical disorders and may be a harbinger
for the eventual demise of the cell (13).
Taken together, our findings support the
concept that innate responses can be in-
duced in RGCs by preconditioning that
promote the survival of the soma in the
face of neurodegeneration-inducing
glaucoma.

Histological, biochemical, molecular
and genetic evidence, in animal models
(14,15,21,25-27), monkeys (28) and hu-
mans (29), collectively support the con-
tention that RGC soma loss in glaucoma
occurs by apoptosis. Our documentation
of expected changes in several apoptotic
endpoints in the current study are conso-
nant with previous findings in these dif-
ferent models with respect to the altered
expression of cleaved caspase-9 (30),
cleaved caspase-3 (21,26) and bcl-2 /bax
(21,26,31,32). That changes in these afore-
mentioned apoptotic endpoints were
largely abrogated in RHP-treated mice
indicates that RHP clearly established a
robust antiapoptotic phenotype for RGC

soma. In fact, at least for bcl-2 and bax,
we confirmed that RHP appears to
“prime the pump” for such an effect,
given the changes we observed after
RHP in mice without subsequent IOP el-
evation. Whether RHP promotes such a
phenotype secondary to transcriptional
and/or posttranslational regulation of
these and other proteins is not yet
known. Overall, our results indicate that,
mechanistically, when RHP precedes the
period of intraocular hypertension, the
somatic expression of several hallmark
pro- and antiapoptotic proteins is altered
in a sustained fashion in the retina such
that the apoptotic demise of RGC soma
is dramatically reduced.

With respect to RGC axons, our find-
ings demonstrate that RHP treatment ro-
bustly protected against glaucomatous
axonal loss, both distally in the postlami-
nar optic nerve and more proximally in
the retinal nerve fiber layer. This result is
a critical finding, given the accumulating
evidence indicating that, in glaucoma
and other neurodegenerative diseases,
axonal injury is a fundamental, and per-
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haps primary, event that ultimately leads
to the apoptotic death of the soma
(11,18,19). Although the extent and pat-
tern of IOP elevation varies between
models, and temporal correlations are
not exact, the 32% axonal loss in the
postlaminar optic nerve we quantified
after 3 wks of IOP elevation was similar
to the magnitude of loss (20-50%) ob-
served after 2—4 wks in other inducible
mouse glaucoma models (24,33). We also
quantified robust preservation of proxi-
mal RGC axon integrity within the retina
in RHP-treated mice. Because of their
role in regulating and, to a minor extent,
participating in axonal transport second-
ary to microtubule contacts, changes in
phosphorylation status of the different
neurofilament subunits can serve as sur-
rogate markers for axonal injury and de-
generation (34). Because SMI32 recog-
nizes a nonphosphorylated epitope on
the neurofilament heavy subunit that
comprises the axonal cytoskeleton in
healthy RGCs (11,12,35), expression
changes are thought to reflect axonal
dysfunction or degeneration and not a
reduction in neurofilament transport;
however, whether reductions in SMI32
labeling truly reflect axonal loss remains
to be demonstrated conclusively. The
greater axonal loss in superior regions of
the postlaminar optic nerve that we ob-
served at 10 wks is consistent with the
regional difference reported for adult
mice 12 wks after IOP elevation by lim-
bal laser photocoagulation (36). Similar
changes also occur in progressive fashion
in the DBA /2] model with advancing
disease (11,18,19).

Collectively, our quantitative and qual-
itative assessments of axonal integrity, at
two locations and at two distinct time
points, make it clear that the preserva-
tion of RGC axons was promoted by
prior RHP treatment despite the pro-
tracted period of intraocular hyperten-
sion that causes significant axonal loss in
untreated mice. Although this protection
may, in part, be secondary to RHP-
induced changes in astrocytes, oligoden-
drocytes, non-RGC neurons and/or
other cells, the endogenous, intra-axonal



protective mechanisms that are uniquely
activated by RHP to prevent or slow this
axonopathy will be important to eluci-
date not only for this disease, but for
brain and spinal cord injury and other
white matter neuropathies. In glaucoma,
this step may involve reductions in the
extent of distal and proximal axonal
transport deficits; inhibition of calcium
influx, modulations in amyloid precursor
protein (APP), caspase-6, nicotinamide
mononucleotide adenylyltransferase
(Nmnat), Jun NH,-terminal kinase (JNK)
or other putative mediators of the Wal-
lerian degeneration-resistant phenotype;
and perhaps even synaptic and other
physiological adaptations at the level of
the superior colliculus (17,20). The lack
of axonal protection in DBA /2] mice de-
ficient in bax (14) would suggest the
axon survival-promoting effects of RHP
are bax-independent and largely distinct
from the antiapoptotic-based protection
that we showed RHP affords to RGC
soma.

Many studies support the contention
that astrocytes (particularly those in the
optic nerve head) contribute importantly
to glaucoma pathology (37). Moreover,
glial cell activation, as evidenced by the
prototypical upregulation of GFAP, is
thought to be a hallmark of CNS injury.
However, this prevailing wisdom is being
countered by the notion that, in glau-
coma, reactive astrogliosis and other func-
tional / morphological responses of astro-
cytes may actually be protective for
nearby axons and soma depending on the
spatio-temporal context of the response to
elevated IOP (38). The astrocyte hypertro-
phy and enhancement in GFAP immunos-
taining intensity that we observed in the
postlaminar optic nerve are well-estab-
lished, relatively early responses in other
inducible (27) and genetic (11,18,39) glau-
coma models and may be a progressive
response to fill spaces vacated by degen-
erating axons (11,18,35,40). That these
glial changes did not occur in mice with
prior RHP may reflect an astrocyte-spe-
cific adaptive response that contributes to
the preservation of neighboring axons, or
it may simply be that this secondary re-

sponse to axonal loss was never initiated
because RGC axonal dysfunction/loss
was minimized by preconditioning.

Somatic and axonal protection of
RGCs by RHP was demonstrated herein
using an inducible mouse model of pri-
mary open-angle glaucoma in which a
sustained, moderate elevation in IOP
was achieved by weekly ligation of
patent episcleral veins. Another group
performed episcleral vein ligation in
mice a single time and also obtained sim-
ilar levels of RGC loss after a couple of
weeks (23); however, as also observed in
rats (25, 27), elevations in IOP were not
as consistently maintained in these single
ligation models. Laser photocoagulation
of limbal and episcleral veins (21,22,33)
and injection of microbeads (24) repre-
sent other ways of inducing transient
IOP elevations in mice. Whereas reviews
of the pros and cons of these rodent
models will likely continue (16), we
would predict that the robust RGC
survival-promoting effects of RHP that
we documented in our model will ulti-
mately be demonstrable in other in-
ducible models of glaucoma and perhaps
other neurodegenerative diseases, given
that preconditioning-induced ischemic
tolerance appears to reflect fundamental,
evolutionarily conserved, adaptive
mechanisms on the part of all the cells in
the body (41).

CONCLUSION

In conclusion, by repetitively precon-
ditioning mice with intermittent expo-
sures to noninjurious hypoxia (before
disease initiation), RGC injury/death at
both somatic and axonal levels was ro-
bustly attenuated after sustained periods
of elevated IOP. This demonstration is
the first to show promotion of a pro-
tracted period of endogenous neurovas-
cular plasticity for preventing the loss of
vulnerable RGCs in an experimental
model of neurodegeneration. The ability
to induce such a sustained, cell death—
resistant phenotype may be therapeuti-
cally advantageous, not only for protect-
ing the vision of glaucoma patients, but

RESEARCH ARTICLE

for saving neurons in other neurodegen-
erative diseases as well.
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