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Cholinergic Activity as a New Target in Diseases of the Heart
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The autonomic nervous system is an important modulator of cardiac signaling in both health and disease. In fact, the signifi-
cance of altered parasympathetic tone in cardiac disease has recently come to the forefront. Both neuronal and nonneuronal
cholinergic signaling likely play a physiological role, since modulating acetylcholine (ACh) signaling fromn neurons or cardiomy-
ocytes appears to have significant consequences in both health and disease. Notably, many of these effects are solely due to
changes in cholinergic signaling, without altered sympathetic drive, which is known to have significant adverse effects in disease
states. As such, it is likely that enhanced ACh-mediated signaling not only has direct positive effects on cardiomyocytes, but it also
offsets the negative effects of hyperadrenergic tone. In this review, we discuss recent studies that implicate ACh as a major regu-
lator of cardiac remodeling and provide support for the notion that enhancing cholinergic signaling in human patients with car-
diac disease can reduce morbidity and mortality. These recent results support the idea of developing large clinical trials of strat-
egies to increase cholinergic tone, either by stimulating the vagus or by increased availability of Ach, in heart failure.
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OVERVIEW

Acetylcholine (ACh) is an ancient sig-
naling molecule that regulates many
physiological functions both in the cen-
tral and peripheral nervous system. In
the periphery, ACh is the major chemical
neurotransmitter, regulating both
parasympathetic and sympathetic tone.
Importantly, the autonomic nervous sys-
tem regulates the function of several dif-
ferent organ systems via activation of
very specific pathways. However, for the
purpose of this review, which focuses on
its effects in the cardiovascular system,
parasympathetic and sympathetic tone
will refer to autonomic efferent outflow
to the heart.

Genesis of ACh depends on the actions
of the enzyme choline acetyltransferase
(ChAT) (1), which converts free choline
and acetyl-CoA into ACh, a process first
described by Nachmansohn and
Machado (2). ChAT is in kinetic excess in
nerve terminals; therefore, minor reduc-
tions in ChAT activity have negligible
impact on ACh content and release (3).
ACh synthesis is exquisitely coupled to
the high-affinity choline transporter
(CHT1), which serves as the rate-limiting
step for ACh production (4). This step is
because of the importance of CHT1 in
regulating the transport of sufficient
amounts of free choline from the extra-
cellular environment into the cholinergic
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presynaptic nerve terminal (5), where it
can be used to synthesize ACh and main-
tain its sustained release. No other
choline transporter can replace CHT1 in
cholinergic nerve endings, since its ge-
netic deletion leads to death shortly after
birth because of respiratory failure (6).

The secretion of ACh into the extracel-
lular environment depends on its packag-
ing into exocytic vesicles via the vesicular
acetylcholine transporter (VAChT) (7).
VAChT is a 12-transmembrane domain
protein that uses the electrochemical gra-
dient of a proton ATPase to store ACh in
synaptic vesicles (7). Elimination of the
VACHT gene abolishes stimulated ACh re-
lease (8). In addition, decreased expres-
sion levels of VAChT lead to proportional
decreases in ACh release (9). On the other
hand, overexpression of VACKT in imma-
ture Xenopus neurons leads to increased
synaptic responses (10). Furthermore,
overexpression of VAChT in mice has
been shown to increase ACh release
(11,12), improve physical fitness and
cause abnormalities in cognitive behavior
(11). Hence, VAChT expression is unique
in its ability to regulate ACh release.
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The parasympathetic nervous system
acts through the vagus nerves, which
mainly innervate the atria of the heart,
with some sparse ventricular innervation
(13), and plays a crucial role in regulat-
ing several aspects of cardiac physiology.
Cholinergic signaling leads to a reduc-
tion in heart rate, the contractile forces of
the atria and the conduction velocity of
both the sinoatrial and atrioventricular
nodes. These actions are mediated by the
binding of ACh to M, muscarinic recep-
tors in atrial myocytes (14,15). M, recep-
tors are coupled to G; proteins, which
mediate the decrease in inotropic and
chronotropic responses through various
downstream mechanisms. One mecha-
nism involves direct inhibition of adeny-
lyl cyclase, which leads to decreased pro-
duction of adenosine 3',5"-cyclic
monophosphate (c(AMP) and inhibition
of protein kinase A (PKA) (16,17). Mus-
carinic receptor activation can also lead
to indirect inhibition of L-type Ca** chan-
nels through a decrease in cAMP produc-
tion (18). Furthermore, the negative in-
otropic and chonotropic effects observed
after activation of M, receptors are due
to hyperpolarization of atrial cells fol-
lowing the direct activation of inwardly
rectifying ACh-sensitive potassium chan-
nels (K,q,) by the G,fy subunit that is
normally activated by the M, receptor
(19). In addition, activation of muscarinic
receptors leads to negative chronotropic
responses due to decreased cAMP levels,
which results in downstream inhibition
of the HCN (hyperpolarization activa-
tion, cyclic nucleotide-gated) channel-
mediated “funny” current () (20,21).

The M, receptor is the main mus-
carinic subtype in the heart (22,23); how-
ever, mounting evidence suggests that
M, muscarinic receptors also play a role
in mediating physiological signaling in
the heart. Indication of cholinergic sig-
naling via the M, receptor subtype came
initially from studies showing that pre-
treatment with an M,-selective inhibitor
attenuated the increase in inositol
triphosphate (IP,) formation observed
after treatment with carbachol (24). This
study suggested that cholinergic signal-

ing via the M, muscarinic receptor in the
heart is coupled with G_-mediated acti-
vation of the phospholipase C (PLC)/IP,
pathway. Furthermore, M, receptors
were also shown to mediate inotropic
signaling in the atria (25). The biphasic
inotropic response observed in isolated
atria has been attributed to both M, and
M, receptor signaling, with the latter me-
diating the positive inotropic response
(25). M, muscarinic receptors also appear
to regulate pathophysiological responses.
It has been reported that cholinergic sig-
naling via M, receptors in the heart can
lead to cardioprotection after myocardial
ischemia, a process thought to occur
through inhibition of miR-376b-5p (26).
Furthermore, it was recently shown that
upregulation of the M, muscarinic recep-
tor in mice attenuates angiotensin II
(Ang II)-induced cardiac hypertrophic re-
sponse (27).

In addition to its direct effects on the
heart via muscarinic receptors, it is well
known that ACh is also critical in regu-
lating sympathetic signaling, since it
mediates fast transmission through
sympathetic ganglia by activating
a-neurotoxin—-sensitive postsynaptic
nicotinic ACh receptors (28). In addition,
ACh can mediate slow excitatory synap-
tic transmission at sympathetic ganglia
via post-ganglionic M1 receptors (29).
Furthermore, ACh can also regulate
sympathetic signaling by binding to
presynaptic receptors on sympathetic
nerve terminals innervating the heart.
Activation of M, muscarinic receptors at
presynaptic sympathetic nerves can in-
crease norepinephrine (NE) release (30),
whereas M, muscarinic receptors appear
to mediate ACh-induced inhibition of
NE release at the atria (31,32).

Interestingly, muscarinic G-protein-
coupled receptor (GPCR) signaling via
downstream G proteins is partially mod-
ulated by the actions of the regulator of
G protein signaling (RGS) proteins,
which can terminate G protein signaling
by increasing hydrolysis of bound
guanosine-5'-triphosphate (GTP) (33).
RGS2, in particular, has been shown to
decrease both G, and G, protein signal-
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ing (34-36), although it acts on the latter
with a lower potency and shows G se-
lectivity (37). In addition, RGS2 has pre-
viously been shown to reduce adenylyl
cyclase activity downstream of G, signal-
ing (38). Importantly, RGS2 can inhibit
hypertrophy in response to f-adrenergic
stimulation (39), an effect that may par-
tially be due to its role in inhibiting eu-
karyotic initiation factor 2B (elF2B)-
mediated protein synthesis (40).
Furthermore, RGS2 knockout (KO) mice
display hypertension under basal condi-
tions (41) and increased ventricular dys-
function and dilation after transverse
aortic constriction, thus suggesting a role
for RGS2 signaling in the cardiovascular
response to pathological stimuli (42).

Evidence suggests that, under physio-
logical conditions, parasympathetic tone
is the main regulator of heart rate and
cardiac activity (43,44). Therefore, it is
likely that, under pathological conditions,
cholinergic tone balances sympathetic
signaling to prevent adverse effects asso-
ciated with increased activation of
B-adrenergic receptor-mediated signal-
ing. This result may serve to prevent car-
diomyocyte remodeling associated with
overactivation of the sympathetic system.
Thus, cholinergic activity modulation
may serve as a new target for the treat-
ment of cardiac disease. Here, recent
findings highlighting the importance of
altered autonomic regulation, especially
cholinergic signaling, and its implications
in cardiac disease will be highlighted.

AUTONOMIC NERVOUS SYSTEM IN
HEART FAILURE: ENHANCED
SYMPATHETIC ACTIVITY

Heart failure is a progressive syn-
drome resulting from a number of differ-
ent conditions characterized by signifi-
cant damage and weakening of the
cardiac muscle, leading to decreased car-
diac output. The prevalence of heart fail-
ure is high, with more that 5.1 million
people over the age of 20 suffering from
heart failure in the United States alone
(45). Despite significant advancements in
clinical care of heart failure patients, this
syndrome continues to be an important



contributor to high morbidity (>1 million
hospital discharges/year), mortality
(>50,000 deaths/year) and economic bur-
den ($30.7 billion/year) in the United
States, according to the latest update on
heart disease and stroke (45).

The autonomic nervous system is the
main regulator of cardiac output (that is,
the efficiency with which the heart
pumps blood). It is accepted that chronic
autonomic sympathetic/parasympathetic
imbalance plays a crucial role in the de-
velopment of heart failure (46-49). In-
creased sympathetic tone, coupled with
decreased parasympathetic drive, is seen
even in the early stages of chronic heart
failure (50,51).

Several lines of research implicate over-
activation of the sympathetic nervous
system in patients as a major contributor
to cardiac remodeling (52). This result is
associated with poorer prognosis and
higher morbidity and mortality (53). Al-
though increased sympathetic tone may
help to preserve cardiac function initially,
it may also contribute to remodeling
(48,54). The activation of neurohumoral
mechanisms, including increased sympa-
thetic nervous system signaling, is a hall-
mark of heart failure resulting from
homeostatic regulation after the initial
decrease in cardiac output (48,54). Sym-
pathetic nervous system hyperactivity is
observed in several cardiac diseases in-
cluding hypertension. Increased sympa-
thetic nervous system (SNS) activity in
hypertensive patients seems to contribute
to altered blood pressure regulation as
well as left ventricular dysfunction (55).
Importantly, decreasing SNS signaling
through activation of the baroreflex has
been shown to increase survival in an an-
imal model of chronic heart failure (56),
thus suggesting that enhanced sympa-
thetic signaling plays a critical role in the
progression of cardiac dysfunction.

Modulation of the autonomic nervous
system has become an important target
in decreasing morbidity and mortality
in heart failure patients. Currently,
B-adrenergic receptor blockers, in combi-
nation with angiotensin-converting en-
zyme inhibitors and angiotensin receptor

blockers, are used as a first-line treatment
for heart failure (57). f-Blockers work by
inhibiting the effect of noradrenaline,
released from sympathetic neurons, on
the p-adrenergic receptors in both the
heart and vasculature and can decrease
heart rate and lower blood pressure
through vasodilation. This step reduces
the pressure placed on the heart and thus
preserves cardiac function. The chronic
use of B-blockers has been quite success-
ful and has been shown to increase car-
diac function and reduce left ventricular
remodeling and mortality in patients,
with third-generation nonselective
pB-blockers decreasing mortality more
than second-generation f3,-selective drugs
(34% versus 40%, respectively) (58-60).

The importance of modulating sympa-
thetic tone in left ventricular hypertro-
phy and cardiomyopathy is further high-
lighted by the fact that autoantibodies
against the f,-adrenergic receptor are
found in patients with both cardiac hy-
pertrophy and dilated cardiomyopathy
(61,62). The cause-and-effect relationship
between the production of autoantibod-
ies and cardiomyopathy has not yet been
fully elucidated. However, the presence
of these autoantibodies has been shown
to activate signaling cascades down-
stream of 3;-adrenergic activation in cul-
tured myocytes and may contribute to
the cardiac dysfunction observed in
cardiomyopathy (63). Additionally, it is
possible that the presence of these au-
toantibodies also leads to autoimmune-
mediated cardiac damage.

In addition to the positive effects ob-
served after inhibition of direct actions
of sympathetic signaling in the heart,
positive outcomes have been observed
following renal sympathetic denervation
in patients with heart failure (64,65). Ac-
tivation of the renal sympathetic nerves
in heart failure leads to increased pe-
ripheral vascular resistance and ventric-
ular remodeling, partly due to higher
levels of Ang II. Renal denervation has
shown promise in human heart failure
patients, since there was a trend toward
improvement in exercise capacity and
left ventricular hypertrophy (64,65). Fur-
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thermore, independent of its blood pres-
sure-lowering effects, renal denervation
has been shown to have a positive effect
on atrial fibrillation (66) and heart rate
reduction (67), both of which have been
shown to play a critical role in morbidity
and mortality in heart failure patients.

AUTONOMIC NERVOUS SYSTEM IN
HEART FAILURE: REDUCED
PARASYMPATHETIC SIGNALING
Hyperactivity of the sympathetic nerv-
ous system is coupled with decreased ac-
tivation of the parasympathetic nervous
system, leading to decreased signaling
through ACh (68). A decrease in
parasympathetic signaling is observed
early after induction of cardiac remodel-
ing, even before the onset of heart failure,
and this cholinergic hypoactivity appears
to contribute to the cardiac dysfunction
observed in heart failure (68). The impor-
tance of cholinergic signaling in cardiac
remodeling is further highlighted by pre-
vious data, suggesting a strong associa-
tion between decreased vagal reflex, as
measured through baroreceptor signal-
ing, and ventricular arrhythmias after
myocardial infarction (69,70). This de-
crease in cholinergic signaling may par-
tially be related to the production of au-
toantibodies against M, muscarinic
receptors, which significantly reduce lig-
and binding in patients with idiopathic
dilated cardiomyopathy and effectively
inhibit downstream signaling (71).
Importantly, it was previously reported
that pacing-induced left ventricular dys-
function and heart failure in dogs leads
to changes in both sympathetic as well as
vagal control of the heart (72). Further-
more, changes in vagus nerve-mediated
regulation of heart rate have been ob-
served during the early stages of left ven-
tricular dysfunction, suggesting that al-
terations in cholinergic signaling in the
heart may contribute to the heart failure
phenotype (72). These changes in vagal
control of heart rate appear to be due to
both cardiac postganglionic signaling as
well as alterations in parasympathetic
ganglionic signaling (73). One additional
mechanism that may contribute to de-
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creased cholinergic signaling in the heart
involves the activation of mechanorecep-
tors in dilated hearts, due to greater me-
chanical stretch of the cardiac muscle.
This mechanical stretch activates sympa-
thetic afferent fibers, which, in turn, fa-
vors reflex inhibition of intracardiac
cholinergic signaling (74).

In agreement with the notion of a
causal relationship between lower
cholinergic signaling and cardiac dys-
function, M, muscarinic receptor KO
mice exhibit a greater impairment in
ventricular function after an acute dose
of phenylephrine, which increases car-
diac afterload (75). Although these mice
exhibited no difference in ventricular
function under baseline conditions,
chronic treatment with isoproterenol to
induce cardiac remodeling led to a sig-
nificant increase in matrix metallopro-
teinase (MMP) activity in M, receptor
KO mice, compared with wild-type mice
(75). This result suggests that cholinergic
tone may play a role in regulating MMP
activity and, therefore, the progression of
cardiac dysfunction. Importantly, in-
creased MMP activity has been associ-
ated with ventricular dysfunction in pa-
tients with heart failure (76,77). In
addition, we have previously reported
that mice with reduced cholinergic neu-
rotransmission, due to decreased expres-
sion of VAChT, exhibit cardiac remodel-
ing and dysfunction (78,79). It has also
been reported that mice with decreased
expression of the presynaptic high-affinity
choline transporter (CHT1; CHT1 het-
erozygous) presents age-dependent ven-
tricular remodeling and dysfunction (80).

PARASYMPATHETIC SYSTEM AS A
TARGET IN HEART FAILURE

Both acetylcholinesterase (AChE) and
butyrylcholinesterase (BChE) modulate
extracellular levels of ACh by regulating
its hydrolysis. In fact, it has been shown
that AChE KO mice are able to use BChE
to breakdown ACh, suggesting a role for
this enzyme in the regulation of choliner-
gic neurotransmission (81). Although the
heart contains both AChE and BChE, the
levels of BChE are much higher than that

of AChE (82,83). Furthermore, both
AChE and BChE are found in blood;
however, the levels of circulating BChE
are significantly greater than those of
AChE (82) and likely serve to regulate
ACh metabolism throughout the body. A
previous report has suggested an inverse
association between serum levels of
BChE and overall mortality in middle-
aged and elderly individuals (84). Fur-
thermore, the same report confirmed a
positive association between BChE levels
and several cardiovascular risk factors
including albumin, cholesterol and
triglycerides (84). An additional study
suggested that increasing levels of BChE
were associated with negative long-term
outcomes, including mortality, in pa-
tients with stable coronary artery disease
(85). In fact, the same group of research-
ers used cholinesterase activity as a bio-
marker to predict mortality in coronary
artery disease patients and found a
strong inverse relationship between
cholinesterase activity and prediction of
mortality (86).

Although the aforementioned studies
suggest the need for at least a minimal
level of cholinesterase activity to reduce
mortality in patients with cardiovascular
disease, accumulating evidence suggests
that restoring cholinergic activity after
experimental heart failure can improve
functional outcomes. In fact, in an animal
model of heart failure, addition of vagal
nerve stimulation to f-blockade therapy
led to improvements in both cardiac con-
tractility measured through left ventricu-
lar systolic and end-diastolic pressure as
well as animal survival (87,88). Addition-
ally, chronic treatment with the
cholinesterase inhibitor donepezil was
able to reduce cardiac remodeling and
increase survival rates in animal models
of heart failure (89,90). Furthermore, in-
creasing ACh levels through administra-
tion of pyridostigmine, a peripheral
cholinesterase inhibitor, led to greater
vagal control of the heart and a reduction
in ventricular dysfunction associated
with heart failure in rats (91). Addition-
ally, a recent study reported similar
findings in two animal models of sympa-
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thetic hyperactivity where pyridostig-
mine administration prevented cardiac
pathological remodeling and restored
ventricular function (92).

Importantly, the positive effect of en-
hancing cholinergic tone is not limited to
animal models of heart failure. In con-
gestive heart failure patients, short-term
administration of the cholinesterase in-
hibitor, pyridostigmine, led to a decrease
in ventricular arrhythmias as well as an
increase in heart rate variability, a pa-
rameter that serves as a marker for auto-
nomic dysfunction in heart disease (93).
Furthermore, a single dose of pyridostig-
mine reduced chronotropic responses
during maximal exercise as well as im-
proved heart rate recovery after maxi-
mal exercise in patients with chronic
heart failure, suggesting that treatment
with a cholinesterase inhibitor can en-
hance parasympathetic tone in heart fail-
ure patients (94,95). In addition, a clini-
cal trial in which a small group of
patients were subjected to vagal stimula-
tion via an implantable system and fol-
lowed for up to 6 months showed an in-
crease in both their New York Heart
Association class score as well as left
ventricular end-systolic volume (96). It
has also been shown that vagal nerve
stimulation is tolerated well and im-
proves quality of life and left ventricular
function in chronic heart failure patients
(97). Additionally, it was recently re-
ported that the use of cholinesterase in-
hibitors in patients with Alzheimer’s
disease led to a 34% reduction in risk of
myocardial infarction and death (98). Fi-
nally, a phase II clinical trial is currently
underway to study the safety of the
cholinesterase inhibitor pyridostigmine
when administered alone in heart failure
patients (clinicaltrials.gov identifier:
NCT01415921). This study may serve as
a precursor for additional clinical trials
aimed at developing a novel therapeutic
approach for the treatment of heart
failure.

The mechanisms of action leading to
the protective effects of cholinesterase
inhibition have yet to be completely
understood. One possibility is that



cholinesterase inhibitors can reduce re-
modeling and cardiac dysfunction by
directly enhancing the levels of ACh.
However, it is also possible that quater-
nary cholinesterase inhibitors, such as
pyridostigmine, can affect the progres-
sion of cardiac dysfunction indirectly
via their ability to alter gene expression
as previously shown in the brain
(99,100), although this phenomenon has
not yet been reported in the heart. Thus,
evidence from the literature supports
the fact that increasing systemic ACh
levels through the use of cholinesterase
inhibitors appears to decrease heart dys-
function after induction of cardiac dis-
ease. Additionally, oral administration
of choline also appears to decrease the
hypertrophic response in mice subjected
to transverse aortic constriction, an ef-
fect that may depend on the actions of a
specific miRNA, miR-133a, as well as
calcineurin (101). Importantly, the anti-
hypertrophic effects of orally adminis-
tered choline are due to its direct actions
on cardiomyocytes, since choline treat-
ment prevents cellular hypertrophy in
cultured cardiomyocytes treated with
isoproterenol to induce remodeling
(101).

The effect of choline is not limited to
protection against afterload-induced hy-
pertrophy. It has been reported that
choline pretreatment also leads to a re-
duction in Ang II-induced remodeling
through inhibition of cellular signaling.
The mechanism seems to involve the re-
active oxygen species (ROS)-mediated
P38 mitogen-activated protein kinase
(MAPK) pathway as well as the Ca*'-
calcineurin signaling pathway, both of
which are associated with Ang II-
mediated cardiac dysfunction (102).
Also in this example, the protective ef-
fect of choline appears to be due to its
direct actions on cardiomyocytes, since
pretreatment attenuated Ang II-induced
hypertrophic response in cultured neo-
natal cardiomyocytes (102). However, it
is unclear whether the protective effect
of choline is due to its role in the pro-
duction of ACh or because choline can
act as a direct agonist of M, muscarinic

receptors, which have been linked to
cardioprotection.

In agreement with the notion that
cholinergic tone in the heart plays a
role in heart failure, cardiac sympa-
thetic nerves switch neurotransmitters
and undergo cholinergic transdifferenti-
ation during heart failure in both ani-
mal models and humans (103). Genetic
inhibition of this transdifferentiation in-
creases mortality of animal models,
suggesting that this transdifferential
switch is protective (103). This observa-
tion agrees with previous findings from
our laboratory that genetic disturbance
of cholinergic machinery in mice leads
to cardiac dysfunction, a phenotype
that can be reversed by treatment with
peripheral cholinesterase inhibitors
(78,79).

NONNEURONAL CHOLINERGIC SYSTEM
For many years, ACh has been classi-
fied as the major neurotransmitter for
parasympathetic signaling. The impor-
tance of ACh in the nervous system is
indisputable; however, ACh can also
play a significant role in cells other than
neurons. A nonneuronal cholinergic sys-
tem (NNCS) appears to be linked to
proper function of various organ sys-
tems in both health and disease. ACh is
a phylogenetically ancient molecule that
can be produced and secreted by both
prokaryotes (bacteria) and lower-order
eukaryotes, including fungi and proto-
zoa (1). Furthermore, several different
cell types in higher-order eukaryotes, in-
cluding humans, use ACh as a signaling
molecule. These include keratinocytes,
which have been shown to produce ACh
at very high levels (104), as well as both
oesophageal and upper respiratory tract
epithelial cells (105,106). Furthermore,
prototypical markers of the cholinergic
system have also been detected in the
kidney (107) as well as pancreatic o-
cells, where nonneuronal ACh plays a
crucial role in priming B-cells to secrete
insulin in humans (108). Finally, the
NNCS is active in regulating immune
function as T cells secrete ACh, which
can then act in an autocrine/paracrine
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fashion to inhibit inflammatory cytokine
production (109,110).

A universally accepted principle in
autonomic regulation of cardiac func-
tion is that parasympathetic innervation
of the ventricles is very sparse (111,112).
However, vagal stimulation has been
shown to reduce ventricular contractil-
ity, in a mechanism independent of
sympathetic signaling (113-115). These
direct negative inotropic effects in re-
sponse to vagal stimulation have led to
further analysis of parasympathetic in-
nervation in the ventricles. Importantly,
although the level of cholinergic inner-
vation in the ventricles is significantly
less than adrenergic innervation, recent
studies suggest that cholinergic nerve
fibers are present at greater levels than
previously thought. Immunostaining for
AChE has revealed a dense innervation
of both the endocardial and epicardial
surfaces of the ventricles in several
species, including human (116-118).
However, immunostaining using the
cholinergic marker CHT1 has revealed
that the presence of parasympathetic
nerve fibers in the ventricles is mainly
restricted to the cardiac conduction sys-
tem, although some staining was ob-
served in the ventricular-free wall (111).
In addition to vagal innervation of the
ventricles, it was recently proposed that
cardiomyocytes are also able to synthe-
size and release ACh at the cellular
level. Cardiomyocytes posses the ma-
chinery (ChAT, VAChT and CHT1) for
de novo production and storage of ACh
(119,120). This nonneuronal ACh may
then act in an autocrine/paracrine fash-
ion to amplify neuronal cholinergic sig-
naling and thereby protect the heart
under stressful conditions, including
heart failure (120). VAChT, which is an
important component of the cholinergic
machinery, was shown to be present in
vesicles in cardiomyocytes (119), sug-
gesting quantal release of ACh from
these cells. Cardiomyocytes appear to
differ from other nonneuronal cell types
with regards to the mechanism of ACh
secretion. Other tissues that secrete
ACh, including the tracheal and colonic
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epithelium as well as human placenta,
do not express the VAChT but rather
use the organic cation transporters
(OCT1/2/3) for ACh release (121-124).
In contrast, VAChT-mediated secretion
appears to be the sole mechanism of
ACh release from cardiomyocytes
(125,126). In addition, release of ACh by
a-cells in the pancreas also requires
VAChT (108).

Recently, we have shown that
cholinesterase inhibition decreases cellu-
lar hypertrophy and remodeling induced
by p-adrenergic stimulation in cultured
cardiomyocytes (125). Specifically, we ob-
served a decrease in the expression of
cardiac stress markers, reduced nuclear
factor of activated T-cells (NFAT) nuclear
translocation and decreased peak systolic
calcium after cholinesterase inhibition in
isoproterenol-treated cardiomyocytes
when compared with isoproterenol treat-
ment alone (125). Furthermore, our in
vivo work supports the notion that a non-
neuronal cardiomyocyte-derived source
of ACh plays a crucial role in regulating
heart function (126). We have shown that
inhibition of ACh secretion from car-
diomyocytes through genetic deletion of
VACHT selectively from cardiac cells,
using the Cre/loxP system, leads to de-
layed heart rate recovery after exercise as
well as significant ventricular remodel-
ing (126). In addition, VAChT KO car-
diomyocytes displayed increased hyper-
trophy as well as activation of the fetal
gene program, increased ROS production
and enhanced peak systolic calcium
when compared with control mice (126).
Furthermore, the molecular remodeling
observed in cardiomyocyte-specific
VAChAT-KO mice led to abnormal ven-
tricular hemodynamics after a bolus dose
of isoproterenol, suggesting that the
NNCS plays a role in regulating cardiac
function under stress (126). Importantly,
cardiomyocyte-specific ChAT-KO mice
showed a similar phenotype, thus sup-
porting the notion that the NNCS is criti-
cal in regulating physiological responses
independent of vagal signaling.

Other studies have also highlighted
the importance of the NNCS in regulat-

ing heart physiology. Recent work has
shown that ChAT KO HL-1 cells, derived
from murine atrial cardiac tissue, display
lower levels of cellular ATP, which leads
to decreased viability after induction of
chemical hypoxia (127). In addition,
ChAT KO HL-1 cells appear to generate
greater levels of ROS than control cells
after an acute challenge with norepi-
nephrine, as measured using the ROS in-
dicator aminophenyl fluorescein (APF)
(127). This increase in ROS production in
ChAT KO cells may contribute to the in-
creased caspase-3 activation and apop-
totic response observed after norepi-
nephrine treatment (127). Conversely, the
overexpression of choline acetyltrans-
ferase (ChAT-Tg), the enzyme responsi-
ble for the synthesis of ACh, specifically
in cardiomyocytes, appears to decrease
remodeling and enhance survival after
myocardial infarction (128). These ChAT-
Tg mice also appear to be less suscepti-
ble to ex vivo ischemia-reperfusion injury,
induced by using a Langerdorff appara-
tus (128). The infarcted region was signif-
icantly decreased in the ChAT-Tg mice,
and the time from onset of ischemia to
beating arrest was significantly increased
in the mutant mice (128). These data fur-
ther highlight the importance of the car-
diac NNCS after induction of stress, in-
cluding ischemia. Together, these
findings provide for an unanticipated
mechanism by which nonneuronal ACh
may play an important role in cardiac
function.

CHOLINERGIC ANTIINFLAMMATORY
PATHWAY

ACh secretion from nonneuronal cells
is not unique to cardiomyocytes. Lym-
phocytes can also release ACh, which
plays a crucial role in regulating the im-
mune response by activating an inflam-
matory reflex, the cholinergic antiinflam-
matory pathway (109,110,129). This
reflex depends on the peripheral actions
of ACh released from the vagus
(130,131); however, nerve fibers innervat-
ing the splenic nerve from the celiac gan-
glion are adrenergic rather than choliner-
gic (132). As such, the presence of ACh in
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the spleen is not due to neuronal cholin-
ergic innervation but, rather, is due to ac-
tivation of the efferent arc of the vagus
nerve and downstream activation of
splenic T cells, which then secrete ACh
(109). This T cell-derived ACh can then
activate a7 nicotinic acetylcholine recep-
tors (nAChRs) on macrophages and
thereby inhibit proinflammatory cy-
tokine secretion, including tumor necro-
sis factor (TNF)-q, interleukin (IL)-1a
and IL-6 (130,131). The antiinflammatory
effects of ACh appear to be mediated
specifically by its interaction with the a7
receptors on macrophages, since this ef-
fect can be blunted using selective nico-
tinic antagonists or a7 receptor KO mice
(131,133-135).

This pathway appears to play a crucial
role in the progression of several cardio-
vascular diseases. In fact, in a two-kid-
ney one-clip animal model of hyperten-
sion, a significant downregulation of a7
receptors, coupled with an increase in
serum levels of TNF-a, was previously
observed (136). This occurred down-
stream of reduced vagal tone, thus sug-
gesting that the cholinergic antiinflam-
matory pathway plays a role in the
induction of secondary hypertension.
Furthermore, increased expression of in-
flammatory cytokines, which may serve
as an indicator of reduced activity of the
cholinergic antiinflammatory reflex, has
been observed in systemic circulation
during chronic heart failure as well as in
the failing myocardium (137,138).

Activation of the cholinergic anti-
inflammatory pathway, which depends
on both vagal as well as nonneuronal
ACh, has been shown to be beneficial in
heart failure (139) and may contribute to
the cardioprotective effects of increased
cholinergic tone observed in several ani-
mal models of heart failure, including
volume overload, tachycardia and myo-
cardial infarction (87-90). This choliner-
gic antiinflammatory pathway serves as
an important determinant of the extent
of cardiac remodeling after induction of
cardiac disease. Notably, it appears to be
altered in heart failure because of the
decrease in parasympathetic tone and



thus peripheral ACh secretion. In fact, it
was recently shown that, after LPS treat-
ment-induced endotoxemia in rats,
vagal nerve stimulation partially attenu-
ated myocardial inflammation and he-
modynamic alterations (140). Further-
more, the inflammatory response in
these mice was enhanced after vago-
tomy, thus suggesting that parasympa-
thetic signaling via the vagus plays a
critical role in reducing the local inflam-
matory response and decreasing cardiac
dysfunction (140).

The exact relationship between levels
of circulating inflammatory cytokines
and cardiac dysfunction is still unclear.
However, recent observations suggest
the possibility that inflammation can
have adverse effects on the progression
of heart failure. In a canine high-rate
pacing model of heart failure, chronic
vagal nerve stimulation led to signifi-
cant inhibition of heart failure develop-
ment, which was associated with atten-
uated systemic inflammation (88), thus
suggesting a possible beneficial effect of
reduced inflammatory cytokines in
heart failure. Additionally, sponta-
neously hypertensive rats, as well as
those with abdominal aorta coarctation-
induced hypertension, exhibited greater
end organ damage, coupled with de-
creased levels of the a7nAChR (141).
Chronic treatment of spontaneously hy-
pertensive rats with an a7nAChR ago-
nist led to decreased tissue levels of
proinflammatory cytokines, which was
associated with decreased end organ
damage (141). Increased levels of in-
flammatory cytokines have been shown
to be directly related to decreased left
ventricular ejection fraction (142). More-
over, increased levels of the proinflam-
matory cytokine TNF-a can induce car-
diac hypertrophy and promote
cardiomyocyte apoptosis, thus con-
tributing to the onset and progression of
ventricular dysfunction and remodeling
(137,143). Therefore, these data suggest
an important role for the cholinergic in-
flammatory reflex in regulating cardiac
function and attenuating the progres-
sion of heart failure, perhaps by regulat-

ing levels of circulating cytokines such
as TNF-a.

Significant amounts of data suggest
that vagal stimulation can induce an
antiinflammatory response. However, it
was recently reported that the reflex acti-
vation of the inflammatory system by the
autonomic nervous system after LPS
treatment is due to the actions of the
sympathetic system (144). Furthermore, a
previous study by the same group sug-
gested that vagal nerve stimulation in
anesthetized rats did not lead to activa-
tion of splenic nerves (145). As such, it is
possible that sympathetic splanchnic
nerves are responsible for the direct acti-
vation of postganglionic splenic nerves.
Furthermore, although currently unclear,
it is possible that vagal signaling can
inhibit secretion of antiinflammatory cy-
tokines via an unexplored, indirect path-
way. Regardless of the specific mecha-
nisms through which vagal signaling can
elicit its effects, it is well established that
the parasympathetic nervous system is
important in regulating the innate im-
mune response and can inhibit cytokine
release and systemic inflammation (146).
In fact, several studies have provided
novel insight into the specific mecha-
nisms through which ACh can act pe-
ripherally to control the immune re-
sponse and regulate the extent of cardiac
dysfunction (88,140,141).

CONCLUSION

Although the exact role of the para-
sympathetic nervous system in cardiac
dysfunction and heart failure has yet to
be completely understood, a number of
studies have recently highlighted the im-
portance of modulating this system in
heart disease. It is evident that increasing
ACh levels, through either vagal stimula-
tion or cholinesterase inhibitors, can act
through a variety of pathways (Figure 1)
and reduce cardiac remodeling in several
different models of cardiac disease. Fur-
thermore, recent data suggest that it may
be possible to modulate the activity of
the NNCS present in both cardiomy-
ocytes, as well as T cells, to delay the
progression of cardiac dysfunction. As
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such, the cholinergic system may serve
as an important pharmacological target
in patients with heart disease.

Recent efforts to repurpose drugs in
cancer and neurological diseases are
underway with the leadership of the
National Institutes of Health (NIH)
(147). The safety and tolerance of
cholinesterase inhibitors are well
known because of their wide use in
Alzheimer’s disease. Therefore, it
would be easy to repurpose this class of
drugs for heart disease. Modulation of
cholinergic signaling may serve as a
novel, unexplored clinical avenue for
the treatment of heart failure in hu-
mans. However, clinical data on the
benefits of cholinesterase inhibitors in
heart failure are still scant. Clinical tri-
als are certainly warranted to test po-
tential benefits of adding cholinesterase
inhibitors to current therapies and eval-
uating the long-term effects of
cholinesterase inhibitors at different
stages of heart failure.
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