
INTRODUCTION
Myasthenia gravis (MG) is an uncom-

mon idiopathic autoimmune disease char-

acterized by impaired neuromuscular
transmission and fatigable muscle weak-
ness. Its overall incidence is ~3/100,000,

and its prevalence is ~2 per 10,000. Both
incidence and prevalence have apparently
increased in recent decades, especially in
subjects aged >50 years at onset (1–3).
Over 80% of patients with generalized
MG have antibodies (Abs) to the skeletal
muscle acetylcholine receptor (AChR),
which are generally accepted to be patho-
genic (2,4). About 10% of them have thy-
momas, which mostly generate (and ex-
port) abundant T cells. The neoplastic
thymic epithelial cells usually fail to ex-
press both human leukocyte antigen

M O L  M E D  2 1 : 7 6 9 - 7 8 1 ,  2 0 1 5  |  S E L D I N  E T  A L .  |  7 6 9

Genome-Wide Association Study of Late-Onset Myasthenia
Gravis: Confirmation of TNFRSF11A and Identification of
ZBTB10 and Three Distinct HLA Associations

Michael F Seldin,1 Omar K Alkhairy,2 Annette T Lee,3 Janine A Lamb,4 Jon Sussman,5

Ritva Pirskanen-Matell,6 Fredrik Piehl,6 Jan J G M Verschuuren,7 Anna Kostera-Pruszczyk,8 Piotr Szczudlik,8

David McKee,5 Angelina H Maniaol,9 Hanne F Harbo,10 Benedicte A Lie,11 Arthur Melms,12

Henri-Jean Garchon,13 Nicholas Willcox,14 Peter K Gregersen,3 and Lennart Hammarstrom2

1Department of Biochemistry and Molecular Medicine, and Department of Medicine, University of California, Davis, California, United
States of America; 2Division of Clinical Immunology, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm,
Sweden; 3The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, North Shore-LIJ Health
System, Manhasset, New York, United States of America; 4Centre for Integrated Genomic Medical Research, Manchester Academic Health
Science Centre, University of Manchester, Manchester, United Kingdom; 5Department of Neurology, Greater Manchester Neuroscience
Centre, Manchester, United Kingdom; 6Department of Neurology, Karolinska University Hospital Solna, Stockholm, Sweden; 7Department
of Neurology, Leiden University Medical Center, Leiden, the Netherlands; 8Department of Neurology, Medical University of Warsaw,
Warsaw, Poland; 9Department of Neurology, Oslo University Hospital, Ullevål, Oslo, Norway; 10Department of Neurology, Oslo University
Hospital and University of Oslo, Oslo, Norway; 11Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo,
Norway; 12Department of Neurology, Tübingen University Medical Center, Tübingen, Germany, and Neurologische Klinik,
Universitätsklinikum Erlangen, Erlangen, Germany; 13INSERM U1173, University of Versailles, Campus Paris-Saclay, France; and 14Nuffield
Department of Clinical Neurosciences, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom

To investigate the genetics of late-onset myasthenia gravis (LOMG), we conducted a genome-wide association study imputation
of >6 million single nucleotide polymorphisms (SNPs) in 532 LOMG cases (anti–acetylcholine receptor [AChR] antibody positive; onset
age ≥50 years) and 2,128 controls matched for sex and population substructure. The data confirm reported TNFRSF11A associations
(rs4574025, P = 3.9 × 10–7, odds ratio [OR] 1.42) and identify a novel candidate gene, ZBTB10, achieving genome-wide significance
(rs6998967, P = 8.9 × 10–10, OR 0.53). Several other SNPs showed suggestive significance including rs2476601 (P = 6.5 × 10–6, OR 1.62)
encoding the PTPN22 R620W variant noted in early-onset myasthenia gravis (EOMG) and other autoimmune diseases. In contrast,
EOMG-associated SNPs in TNIP1 showed no association in LOMG, nor did other loci suggested for EOMG. Many SNPs within the major
histocompatibility complex (MHC) region showed strong associations in LOMG, but with smaller effect sizes than in EOMG (highest
OR ~2 versus ~6 in EOMG). Moreover, the strongest associations were in opposite directions from EOMG, including an OR of 0.54 for
DQA1*05:01 in LOMG (P = 5.9 × 10–12) versus 2.82 in EOMG (P = 3.86 × 10–45). Association and conditioning studies for the MHC region
showed three distinct and largely independent association peaks for LOMG corresponding to (a) MHC class II (highest attenuation
when conditioning on DQA1), (b) HLA-A and (c) MHC class III SNPs. Conditioning studies of human leukocyte antigen (HLA) amino
acid residues also suggest potential functional correlates. Together, these findings emphasize the value of subgrouping myasthenia
gravis patients for clinical and basic investigations and imply distinct predisposing mechanisms in LOMG.
Online address: http://www.molmed.org
doi: 10.2119/molmed.2015.00232

Address correspondence to Michael F Seldin, Department of Biochemistry and Molecular

Medicine, and Department of Medicine, University of California, Davis, CA 95616. Phone:

530-754-6016; Fax: 530-754-6015; E-mail: mfseldin@ucdavis.edu.

Submitted November 4, 2015; Accepted for publication November 9, 2015; Published On-

line (www.molmed.org) November 10, 2015.



(HLA) class II and the autoimmune regu-
lator gene (AIRE). The lack of expression
of these genes presumably impairs self-
tolerance induction in T cells developing
in thymomas (which has been implicated
in these patients’ distinctive clinical and
autoantibody profiles) (Table 1) (2,5).

Patients with generalized AChR-Ab–
positive MG without thymoma are 
generally sub-grouped into those with
early-onset myasthenia gravis (EOMG)
or late-onset myasthenia gravis (LOMG)
(Table 1), with a cutoff at ages 40, 45, 50
or even 60 years in different studies
(6–10; rev. in 5). As summarized in Table
1, these subgroups consistently show
contrasting sex ratios, thymic histology
and HLA associations (6,10–13). More-
over, several autoantibodies are almost
uniquely shared by patients with LOMG
or thymomatous MG but not EOMG,
which remains unexplained.

We have previously reported a  genome-
wide association study (GWAS) in 649
EOMG patients using rigid entry criteria
(onset age <40 or <45 years if the thymus
showed hyperplasia). We confirmed the
association with PTPN22 (14) and identi-
fied a novel association with a TNIP1 cod-
ing single nucleotide polymorphism
(SNP) and defined HLA associations (15).
The study mapped the strongest HLA as-
sociation to HLA-B*08 rather than class II
SNPs in linkage disequilibrium (LD) with
this class I allele (15).

Recently, another group reported a
GWAS in EOMG (n = 235) and LOMG

patients (n = 737), both separately and
combined (16). Although not supporting
all of the previously reported associations
(see Discussion), this study provided
strong evidence for an association with
TNFRSF11A (alias RANK) in the LOMG
subset defined by age of onset >40 years
(16). The current study was undertaken
to further define genetic associations in
stringently defined LOMG patients (onset
≥50 and ≥60 years), again focusing on
Northern Europeans, using population
substructure matching of publicly avail-
able control genotypes, and imputation
methods extending to specific HLA vari-
ants and amino acids (AAs). The results
suggest a biological basis for defining a
cutoff for age of onset between EOMG
and LOMG and again imply distinct ge-
netic and environmental factors in predis-
position in these groups.

MATERIALS AND METHODS

Study Subjects
All the LOMG patients included in

these studies were European and met the
following criteria: (a) clinical diagnostic
criteria for MG; (b) positive for anti-
AChR Ab; (c) no radiological evidence of
thymoma; and (d) onset age ≥ 50 years.
Cases were collected from Stockholm,
Sweden; Oslo, Norway; Manchester and
Oxford, England; Paris, France; Leiden,
the Netherlands; Tübingen, Germany;
and Warsaw, Poland. Samples for all par-
ticipants of this study were collected

under institutionally approved inform
consent (at the respective institutes) and
complied with the Helsinki Declaration
as revised in 1983.

Of a combined total of 557 LOMG sam-
ples collected, 25 were excluded because
they failed checks for quality control (QC)
(<90% complete genotyping data), cryptic
relationship (p̂ >0.15, using PLINK [17]),
ancestry and/or SNP heterozygosity (>3
standard deviation above or below mean).
The remaining 532 patients were matched
1:4 with controls available from these
same populations plus others from Euro-
pean–American populations (Supplemen-
tary Table S1).

Quality Control
In addition to the QC for individual

samples, the SNP data were carefully re-
viewed, and exclusion criteria were ap-
plied to minimize potential batch effects
as described below. The application of
these criteria was particularly important
given the derivation of genotypes from
multiple platforms typed in different lab-
oratories. We included only SNPs with
<5% missing data, Hardy-Weinberg equi-
librium P values >1 × 10–4 in controls and
>1 × 10–5 in combined cases and controls,
and minor allele frequencies >0.02. These
procedures were applied in a stepwise ap-
proach separately for each data set and
after combining the data sets. Thus, for
each of the separately derived control
genotyping sets, SNPs were excluded if
they failed the above criteria within the
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Table 1. Subgrouping of MG patients in previous studies.

EOMG LOMG Thymoma-MG

MG onset age (years) 10–40, 50 or 60 (puberty to menopause) >40, >50 or >60 >10

Female:male ≥ 3:1 1:1.7 1:1

Thymic histology Medullary lymph node-like infiltrates (>80%) Atrophy/normal-for-age Epithelial neoplasm

Autoantibodies (at diagnosis)

AChR 100% by definition 100% by definition ≤100%

Titin <5% >70% >95%

IFN-α and/or IL12 <5% ~60% >70%

HLA associations (references) DQ2–DR3–B8–A1: especially in females (10,15) DR15 (6); DR2/B7 in males (10); None confirmed
DR7 if titin-Ab+ (12)

The summary is based on studies of European patients. The specific autoantibodies are rare in other diseases, apart from those against
IFN-α values, which are found in ≤100% of patients with autoimmune polyendocrine syndrome type 1 (5).



individual control set (platform and labo-
ratory) or in combination with any of the
other control groups, or in the complete
data set. The Hardy-Weinberg criteria
were applied after exclusion of non-
 European individuals. Finally, after selec-
tion of the control data set, SNPs were ex-
cluded if the allele frequencies differed by
>10% between different control groups.

We used two different genotyping
platforms: the 370K or compatible Illu-
mina platforms for set 1 (n = 214 cases
and 856 controls) and the 2.5 million Illu-
mina platform for set 2 (n = 318 cases and
1,272 controls (Supplementary Table S1).
For sets 1 and 2, a total of 280,929 and
1,406,133 SNPs, respectively, passed all
data filters. Because only ~150,000 SNPs
were shared between platforms, imputa-
tion (see below) was performed sepa-
rately for each platform, and the data
were combined and resubjected to the
same QC metrics described above.

Ancestry and Case-Control Matching
European ancestry in both cases and

controls was determined using a panel of
2,440 SNPs (intermarker r2 <0.05, minor
allele frequency >0.05) and analyzed
using STRUCTURE v2.3.4 (18,19) and
subjects of known European, Amerindian,
East Asian, and West African origin as
previously described (20). We used
STRUCTURE to exclude non-European
and admixed study participants, because
this Bayesian clustering method allows
exclusion/inclusion criteria to be set
using reference populations. Unlike prin-
cipal component analysis (PCA), the clus-
tering algorithm can be run under condi-
tions that are only marginally affected by
the inclusion of the unknown samples.
Briefly, analyses were performed using
>100,000 resamplings and >50,000 burn-in
cycles under the admixture model and
using the prior population information
for the reference populations. Runs were
performed under the λ = 1 option, where
λ estimates the prior probability of the al-
lele frequency and is based on the Dirich-
let distribution of allele frequencies. Sub-
jects with >10% non-European ancestry
were excluded from further analyses.

Each case was then matched with four
controls based on PCAs performed using
25,914 selected SNPs shared across plat-
forms (both sets 1 and 2) using EIGEN-
SOFT v5 (21). SNPs were chosen from
overlapping SNPs with minimal inter-
marker LD (r2 < 0.05) in Windows of 
2 Mb after exclusion of the major histo-
compatibility complex (MHC) and ge-
nomic regions with large inversions.

Matching (4 controls:1 case) was per-
formed separately for males and females
and also for set 1 (370K Illumina plat-
form, 87 female and 127 male cases) and
set 2 (HumanOmni 2.5M-8v1-1 chip Illu-
mina platform, 113 female and 205 male
cases) using procedures previously de-
scribed (EOMG) (15). A total of 3,190 fe-
male and 2,159 male European control
genotypes for set 1 and 5,392 female and
3,940 male European control genotypes
for set 2 were available for matching
after QC (Supplementary Table S1).
Matching used the first five principal
components (PCs) (which accounted for
>99% of EIGENVALUE variance in
Tracy-Widom significant PCs). As shown
in Supplementary Table S1, there were a
total of 856 controls for set 1 (4× the
number of set 1 cases) and 1,272 controls
for set 2 (4× the number of set 2 cases).

After matching, the first 7 PCs showed
significant Tracy-Widom statistics, but
just the first 3 PCs explained over 99% of
their total EIGENVALUE variance for
these PCs. After matching, λgc was 1.039
without correction and decreased to
1.029 after controlling for these three
PCs. PCA and scree plots are shown in
Supplementary Figures S1 and S2.

Genome-Wide Imputation of SNPs
Imputation was performed by using a

1000 Genomes Phase 1 V3 reference set
and the University of Michigan Imputa-
tion Server (https://imputationserver.
sph.umich.edu/start.html#!run/minimac).
This method uses a computationally effi-
cient implementation of the Markov
chain-based haplotyper (MaCH) algo-
rithm with prephasing using SHAPEIT
(22) as previously described (23). The
program outputs the most likely geno-

type and provides r2 metrics for quality
measurement. We performed imputation
separately for set 1 and set 2 genotypes.
A total of 6,175,472 genotypes showed r2

>0.8 common to both set 1 and set 2, and
all QC criteria as described above that
were applied to these joined set 1 and set
2 genotypes. (Note: testing of strongly
suggestive associated SNPs (P values
<10–7) with genotypes that met lower r2

thresholds in one or both sets showed P
values >5 × 10–5 after regional imputa-
tion and testing. We therefore restricted
further analyses to genotypes with r2 >
0.8 in both sets 1 and 2.) The combined
set 1 and 2 case (532) and control (2,128)
imputed genotypes (6,175,472) were used
as the data set for initial analyses.

Regional Imputation of SNPs and
Insertion/Deletion Polymorphisms

For any SNP that showed suggestive
association (P < 10–5) in the screening 
imputation (described above), we 
performed regional imputation using 
Impute2 (IMPUTE v2.3.1) (https://
 mathgen.stats.ox.ac.uk/impute/impute_
v2.html) (24) under recommended set-
tings and the afore-noted 1,000-genome
phase 1v3 reference set. This software
provides genotype probabilities (rather
than base assignments), enabling a more
accurate assessment of statistical sup-
port. Overall errors compared favorably
with other approaches (24). The intervals
examined (excluding the MHC) included
at least a three order of magnitude fall-
off of significance from the association
peak and a minimum of 250 kb. For the
MHC, we examined a 4-Mb interval
(chromosome 6, ~29–33 Mb, HG19/HG38).
We applied the algorithm with 250-kb
buffers (in addition to the interval under
examination) and without prephasing
(standard  IMPUTE2 MCMC algorithm)
as recommended by the developers for
more accurate, although less computa-
tionally efficient, imputation.

Imputation of HLA Antigens
To impute HLA antigens, we used a

separate reference data set collected by
the Type 1 Diabetes Genetics Consortium

R E S E A R C H  A R T I C L E
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and the SNP2HLA software, as described
by its developers (25). The Beagle soft-
ware package (26) was used for imputa-
tion in this data set (compatible with this
software). Here, we also used genotype
probabilities for association testing; our
final data consisted of only antigens,
AAs and SNPs with information scores
>0.8 in SNPTEST analyses.

Association Testing Statistics
For all association results, analyses in-

cluded covariates for sex, genotype set
and the first three PCs (as discussed
above). All association tests were done
by using the combined imputed SNP
data set as described above. For autoso-
mal data, we used SNPTEST V2.3
(https:// mathgen.stats.ox.ac.uk/genet-
ics_software/ snptest/snptest.html) for
the primary association analyses for the
imputed genotypes, as well as for condi-
tional analyses. For the X chromosome
analyses we also used SNPTEST V2.5.
Analyses included an X inactivation
model and a model that allows for heter-
ogeneity (stratify_on option). With the
exception of the screening imputed geno-
types, genotype probabilities (and a min-

imum information score of 0.8) were
used in all analyses.

Epigenetic Markers
To assess possible regulatory function,

we used RegulomeDB (27). This database
(search engine) annotates SNPs for pre-
dicted and known regulatory region for
DNase hypersensitivity, transcription
factor binding sites and promoter re-
gions. It includes the current Encyclope-
dia of DNA Elements (ENCODE) re-
leases and chromatin states from the
Roadmap Epigenome Consortium and
uses multiple resources that include
DNase footprinting, position weight ma-
trices and DNA methylation information
(for further description of RegulomeDB
see http://regulomedb.org). For this as-
sessment, we examined all SNPs that
were in at least weak LD (r2 > 0.25) to the
strongest associated SNP and had anno-
tations that showed possible regulatory
function. Conditional analyses were then
performed, and the SNP with the
strongest likelihood of function was pre-
sented in Results. We also tested combi-
nations of putative functional SNPs.
However, conditional analyses on combi-

nations of SNPs did not enhance the 
signal attenuation compared with the
SNP presented in Results for ZBTB10,
TNFRSF11A or the class III MHC region.

Other Software
For graphical presentation of associa-

tion results, we used qqman for 
quantile–quantile (Q–Q) and Manhattan
plots (http://cran.r-project.org/web/
packages/qqman/qqman.pdf) and 
LocusZoom for chromosome region asso-
ciation plots (28).

All supplementary materials are available
online at www.molmed.org.

RESULTS

Screening for Association with LOMG
To screen for putative candidate loci,

we selected AChR-Ab–positive LOMG
cases with no radiologic evidence of thy-
momas (see Materials and Methods and
Supplementary Table S2). We used two
age of onset cutoffs (≥50 and ≥60 years)
based both on previous studies (see In-
troduction) and the bimodal distribution
of MG with age of onset (Figure 1).

Since two disparate SNP GWAS
chipsets were used for genotyping, we
melded the data using a genome-wide
imputation strategy (see Materials and
Methods for additional details). We tested
for associations with variants imputed
with high confidence (r2 ≥ 0.8, required
for each imputed variant from both
GWAS panels); the analyses included
over 6 million variants with minor allele
frequencies ≥0.02. The association tests
included covariates to control for residual
population substructure, and sex.

As expected in any autoimmune dis-
ease, we found major contributions from
the MHC region on chromosome 6 in pa-
tients with cutoff ages ≥50 and ≥60 years,
using Q–Q analyses and Manhattan plots
(Figure 2). HLA associations were further
refined with more precise imputation
methods, as detailed later.

The results also suggest other loci on
chromosomes 1, 5, 8, 12, 18 and 21 (Fig-
ure 2, Supplementary Table S3). Even
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Figure 1. Relationship of sex and age of onset for AChR Ab + MG. The histogram shows the
number of female (blue) and male (red) MG cases for 10-year age of onset intervals
starting at decade 2 (age of onset 10–19 years). The cases include EOMG (onset age by
definition <40 years if no histology or <45 years if histology shows thymic hyperplasia, n =
649) (15), unclassified (onset age 40 to < 50 years, n = 23) and LOMG (onset age ≥50
years, n = 532) (current study).



after removal of the extended MHC re-
gion, the Q–Q plots still show deviations
from the expected P value distribution
(Figures 2A, C), especially in the
stronger-powered subgroup with onset
at ≥50 years of age. We found suggestive
evidence for association at the PTPN22
locus, as previously noted in EOMG
(14,15) (Supplementary Table S3). In con-
trast, there was only marginal evidence
for any association signal for TNIP1 (all
P values >0.001 within 100 kb flanking
this gene or in r2 > 0.25), the strongest
non-HLA signal we observed in EOMG
(15).

More Precise Imputation of Potentially
Associated Loci

To further define the loci thus im-
puted (P < 10–5), we next applied a more
accurate but computationally less effi-
cient imputation method without
prephasing or applying pruning proce-
dures (see Materials and Methods). Sev-
eral of the above candidates maintained
either suggestive or significant associa-
tions (Table 2, Supplementary Tables S4
and S5).

Outside the MHC region, only the
chromosome 8 SNP, rs6998967, 5′ of
ZBTB10, reached conservative genome-

wide criteria (5 × 10–8) for association
using either cutoff age. We also found
suggestive evidence for associations in
eight disparate regions (Table 2); they in-
clude the same R620W variant of
PTPN22 noted previously, and one for
the tumor necrosis factor receptor super-
family, member 11a, NFKB activator 
(TNFRSF11A, alias RANK and its particu-
lar SNP, rs4574025), reported recently in
LOMG (16). For each of the loci achiev-
ing at least suggestive significance (P <
10–5), odds ratios (ORs) were similar for
the more stringent cutoff age (≥60 years)
(Table 2 and Supplementary Table S4).
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Figure 2. Quantile–quantile (Q–Q) and Manhattan plots for LOMG GWAS results. (A) Results are from screening study (for Minimac imputation,
see Materials and Methods). (B) Age of onset ≥50 years (n = 532). (C, D) Age of onset ≥60 years (n = 449). (A, C) The observed deviation above
the diagonal (expected Q–Q distribution) indicates evidence for genetic association. (B, D) Blue and orange show alternate chromosomes.



Conditional Analyses of the ZBTB10
and TNFRSF11A Locus SNPs

The details of the ZBTB10 association
are shown in a LocusZoom plot (28)
graph (Figure 2). The rs6998967 SNP is
located ~34 kb 5′ of the zinc finger– and
BTB domain–containing 10 (ZBTB10)
gene, and there are multiple SNPs in
strong LD showing suggestive associa-
tions (Figure 3A). Conditioning for the
rs6998967 SNP implicated a single haplo-
type marked by this variant (Figure 3B).
Conditioning on rs1065238, a potential
strong regulatory SNP (RegulomeDB
score = 1f, eQTL + transcription factor
[TF] binding site/DNase peak; see Mate-
rials and Methods) (27), also attenuated
most of the signal from this region (Fig-
ure 3C).

Similarly, the TNFRSF11A association
was primarily due to a single haplotype
(Figure 4). It includes rs8086340, also
with potential regulatory function (Regu-
lomeDB score = 4, possible regulatory
site), in LD with the strongest associated
SNP, rs4574025.

HLA Associations
To further examine associations within

the MHC region, we also imputed both
classical HLA alleles and AA variants in
them. Three peaks of association were
observed in the MHC region (Figure 5A).
These corresponded to the HLA-A, MHC
class III and MHC class II genes.

For classical HLA class II antigens,
multiple genes showed evidence for as-
sociations (Table 3 and Supplementary
Table S6). However, most of these show
protective ORs <1, in stark contrast with
those observed in EOMG. Furthermore,
the LOMG risk (ORs >1) associations
were weaker, and none of them
achieved genome-wide significance in
the series as a whole. The strongest as-
sociation we found in LOMG was with
DQA1*05:01 (P = 5.9 × 10–12, OR 0.54).
Similarly, DRB1*03:01, which is in
strong LD, showed an OR of 0.5 that is
consistent with a previous study show-
ing negative association in anti-titin-
Ab–positive LOMG patients (12). These
alleles belong to the B8.1 haplotype that
predisposes strongly to EOMG (OR
2.82); HLA-B*08 (OR 6.41) also belongs,
which gave a contrasting OR of 0.69 in
LOMG. Evidently, these alleles favor
early onset of MG in susceptible sub-
jects, rather than protecting against it at
all ages.

Although none of the HLA-A antigens
reached genome-wide significance, the
70Q present in HLA-A*68:01, *03:01 and
*11:01 (and other rare alleles) showed a
significant risk association (OR 1.5, P =
2.6 × 10–8). For MHC class III, the minor
alleles of multiple SNPs showed a
mixed pattern of significant positive
and negative associations (Supplemen-
tary Table S5).

Conditional Analyses of the MHC
Region

To localize the key variants more pre-
cisely, we performed extensive condi-
tional analyses (Figure 5 and Table 4).
Conditioning on all nominally significant
classical HLA-DQA1 antigen genes (P <
0.05) almost completely eliminated the
strongest peak of association, which was
located in the MHC class II region (Fig-
ure 5B and Table 4). Conditioning instead
on DRB1 antigens had similar but less
complete effects on the MHC class II re-
gion (residual P = 5.58 × 10–5 versus P =
1.11 × 10–3; Table 4).

Nearly all the signal in the HLA-A re-
gion resisted conditioning on MHC
class II genes or the strongest associated
SNP there, rs111945767 (which attenu-
ated the MHC class II signal nearly as
well as HLA-DQA1) (Table 4). Con-
versely, conditioning on all classic 
HLA-A antigen genes (P < 0.05) left
strong residual association signals in the
MHC class II region (P value still <10–15;
Table 4).

The MHC class III region signals were
largely unaffected, even by conditioning
on the combination of HLA-A and DQA1
(Figure 5C), although this step almost
completely attenuated the HLA-A and the
MHC class II region peaks. Conditioning
on HLA-A, DQA1 and HLA-C also left
residual signals in class III (Table 4). We
also note that the combination of HLA-A,
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Table 2. Strongest association signals for LOMG.

Position Minor Major Case Control Additive OR age 
Variant Chromosome (HG19) Allele Allele MAF MAF P value OR (95% CI) ≥60 years Gene/location

rs111945767 6 32517045 C G 0.46 0.62 3.13 × 10–17 0.52 (0.44–0.61) 0.49 MHC region
rs6998967 8 81364205 A G 0.10 0.17 8.86 × 10–10 0.53 (0.42–0.65) 0.53 ZBTB10/34 kb 5′
rs4574025 18 60009814 C T 0.55 0.47 3.91 × 10–7 1.42 (1.24–1.63) 1.31 TNFRSF11/intron
rs9963862 18 20587911 G A 0.42 0.34 4.19 × 10–7 1.44 (1.25–1.66) 1.47 RBBP8/intron
rs12653117 5 9386585 T C 0.13 0.08 5.34 × 10–7 1.76 (1.42–2.17) 1.75 SEMA5A/intron
rs6914704 6 1759880 G C 0.42 0.49 2.32 × 10–6 0.72 (0.63–0.83) 0.74 GMDS/intron
rs4128527 8 72682693 T C 0.14 0.19 3.68 × 10–6 0.62 (0.50–0.77) 0.62 MSC/71 kb 5′
5:31213962:D 5 31213962 TC T 0.09 0.05 3.84 × 10–6 1.84 (1.44–2.37) 1.68 CDH6/intron
rs4518467 6 92196398 A G 0.11 0.07 4.31 × 10–6 1.77 (1.40–2.23) 1.94 MIR4643/35 kb 5′
rs2476601 1 1143777568 A G 0.16 0.11 6.50 × 10–6 1.62 (1.31–1.99) 1.66 PTPN22/coding

Data are shown for onset age ≥50 years, except for the OR for onset age ≥60 years as comparison. The strongest P values (if P < 10–5) for
putative associations of each region are shown after re-analyses using IMPUTE2 including relevant covariates (see Materials and
Methods). Additional SNPs for each region are shown in Supplementary Table S4. The OR and 95% CI are shown for the minor allele. The
minor allele and minor allele frequency (MAF) was determined based on the entire data set (controls matched 4:1 with cases).



DRB1 and HLA-C, and the combination of
HLA-A, DQB1 and HLA-C, also did not
attenuate the class III signal (data not
shown). Finally, conditioning on HLA-A,
DQA1 and an MHC class III SNP effec-
tively eliminated almost all association
signals in the entire region (residual P >
0.002) (Figure 5D). We cannot locate the
precise locus in MHC class III because 
of the strong LD within this region (Fig-
ure 5C); three of its SNPs each showed
nearly equivalent effects in combination
with the HLA-A and DQA1 conditioning:
rs2256974, P = 0.0022; rs6929796, P =
0.0018; and rs2071596, P = 0.0015.

The results were similar whether we
conditioned on HLA alleles or selected
AAs within them (Table 4). Conditioning
just on the 11S (present in HLA-DR1*03:01
and most DRB1*11, *13 and *14 subtypes)
plus 70Q in HLA-A (in HLA-A*68:01,
03:01, 11:01), plus the rs2256974 class III
SNP, attenuated most of the association
signal (residual P = 2.3 × 10–4). Condition-
ing on 130A and 75I in DQA1 (present in
DQA1*01:03 and DQA1*05:01, respec-
tively) plus the same HLA-A AA and class
III SNPs showed marginally better attenu-
ation (residual P = 5.4 × 10–4), which be-
came almost complete after adding 152A
(includes HLA-A*11:01 and 01:01) and/or
152E (includes HLA-A*03:01, 25:01 and
26:01) in HLA-A (residual P = 1.95 × 10–3).

Comparing Associations in Males and
Females

Because we found significantly stronger
associations and effect sizes with HLA-B8
in EOMG females than in males (10,15), we
checked for analogous differences in
LOMG at all the strongest associated loci
within and outside HLA (Supplementary
Table S7). Although none of these differ-
ences were significant (based on Z score
calculations), effect sizes (whether risk or
protective alleles) were larger in the males
for each MHC sub-region. Among the
other loci, only the PTPN22 SNP showed
any significant gender difference (unlike in
EOMG), the association being confined to
males (OR 1.83, 95% confidence interval
[CI] 1.4–2.4), with no significant association
in females (OR 0.75, 95% CI 0.54–1.04).
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Figure 3. ZBTB10 association signals in LOMG (age of onset ≥50 years). The ordinate shows
the strengths of the association signals, with the position on chromosome 8 shown in
megabases (HG19 map) along the abscissa. The P value for each SNP is shown before (A)
and after (B) conditioning with rs6998967, the strongest associated SNP, and rs1065238 (C),
a SNP in strong LD, with probable regulatory effects (RegulomeDB score = 1f). The color-
coded symbols correspond to the strength of linkage disequilibrium (based on HG19/1000
genome, November 2014, European population) with the most significantly associated
SNP (purple filled circle) in each panel.



Comparing Associations in
Generalized and Ocular LOMG

Lastly, we evaluated whether stratify-
ing AChR-Ab–positive LOMG for clinical
features of generalized versus ocular dis-
ease would affect our results. The ORs
were similar among the entire LOMG
study group (n = 532) and those classified
as generalized (n = 408) for both MHC
(for example, HLA-DQA1*05:01, OR 0.52
versus OR 0.51) and non-MHC loci (Sup-
plementary Table S8). The ocular group
showed more fluctuation in the ORs, as
expected from the small sample size (n =
78), but the pattern was broadly consis-
tent with that observed for the general-
ized subgroup (Supplementary Table S8).

DISCUSSION
This genetic study included only pa-

tients strictly defined by MG with age of
onset ≥50 years. Importantly, our GWAS
findings show sharp contrasts between
EOMG and LOMG (whether with onset
≥60 years or even ≥50 years) and impli-
cate regions both within and outside the
MHC complex; only PTPN22 showed
similar associations in both groups. By
providing a more biological basis for the
cutoff between EOMG and LOMG, our
findings should provoke new hypotheses
about the distinct genetic and environ-
mental factors influencing susceptibility.

For non-MHC variants, only a single
locus with a peak at rs6998967, 34 kb
proximal to ZBTB10, met conventional
GWAS criteria for a significant associa-
tion. It is in LD with a variant, rs1065238,
that could account for most of the signal
and is located in a DNase-sensitive quan-
titative trait locus; in fact, it is located
within a binding site for POU2F1, Zfp187
(ZSCAN26), POU3F1 and POU4F3 (29).
This gene previously met genome-wide
association criteria in studies of sex hor-
mone–binding globulin levels (linked to
sex steroid regulation) (30) and asthma
with hay fever (31). It has also shown
suggestive levels of association in hy-
pothyroidism (32), atopic dermatitis (33)
and self-reported allergy (34). ZBTB10 is
thought to regulate specificity proteins
Sp1, Sp3 and Sp4 (35,36); in cell culture
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Figure 4. TNFRSF11A association signals in LOMG. The ordinate shows the strength of the
association signals, with the position on chromosome 18 shown in megabases (HG19
map) along the abscissa. The P value for each SNP is shown before (A) and after (B) con-
ditioning with rs4574025, the strongest associated SNP, and rs8086340 (C), a SNP with possi-
ble regulatory effects (RegulomeDB score = 4). The color-coded symbols correspond to
the strength of linkage disequilibrium, with the most significantly associated SNP (purple-
filled circle) in each panel.



studies, it is suppressed by ROS-
 microRNA27a, thereby enhancing estro-
gen receptor α expression and mediating
estrogen effects (36). Potential im-
munoregulation could either be through
Sp1 (critical for interleukin [IL]-10 and
CD40 responses) (37,38) or indirectly via
estrogen effects on autoimmunity (39,40).

Non-MHC loci meeting suggestive cri-
teria for association notably include
PTPN22 and TNFRSF11A. PTPN22 was re-
ported in several studies in MG (14,15,41),
reaching GWAS criteria in EOMG (15).
This association is with the same coding
SNP, rs2476601, as in EOMG, with similar

effect sizes (ORs 1.62–1.71), and in multi-
ple other autoimmune diseases including
type 1 diabetes mellitus, rheumatoid
arthritis (RA) and systemic lupus erythe-
matosus (42–44). The predisposing 620W
variant is thought to restrain T-cell re-
sponses less than its 620R counterpart, as
well as increase B-cell activation on anti-
gen binding (45). The higher prevalence of
this variant in our males together with the
lack of association with TNIP1 in LOMG
and the starkly contrasting HLA associa-
tions (discussed below) argue strongly
that the PTPN22 association is not due to
EOMG contaminants in our LOMG series.

Our findings with TNFRSF11A confirm
a recent report where one of the same
SNPs (rs4574025) showed one of the
strongest associations, again only in MG
patients with onset after age 40 years (16).
This result might reflect the potential reg-
ulatory function of rs8086340 SNP, which
is in such strong LD with the rs4574025
that conditioning on either SNP gave al-
most identical residual P values (<0.004).
Variants of TNFRSF11A (RANK) underlie
a familial form of Paget disease of the
bone (46) and a recessive form of os-
teopetrosis with hypogammaglobuline-
mia (47). TNFRSF11A variants are also im-
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Figure 5. Analysis of the HLA region association signals in LOMG. In each panel, the symbols show the strength of the association signal
(ordinate) for this region of chromosome 6 shown in Mb (HG19) along the abscissa; the SNPs, HLA antigens and HLA AAs are given color-
coded symbols that correspond to the strength of LD with the most significantly associated SNP (purple filled circle). The P values for
each variant are plotted: (A) no conditioning; (B) conditioning on HLA DQA1; (C) HLA DQA1 and HLA-A; and (D) HLA DQA1, HLA-A and
class III SNP (rs2071596). Additional conditioning results are summarized in Table 4.



plicated in GWAS both in other forms of
Paget disease and of bone mineral density
(48,49). With respect to immunologic
functions, TNFRSF11A appears to be im-
portant in lymph node development and
thymic selection (50), and its expression
on dendritic cells may also be critical to
specific interactions with T cells (51,52).

In the MHC, we found strong associa-
tions with multiple different loci. For
HLA alleles, the strongest association was
with HLA-DQA1*05:01 (P = 5.3 × 10–12,
OR 0.54) and minimal with HLA-B*08:01
(P = 1.8 × 10–3, OR 0.69), unlike in EOMG,
where HLA-B*08 predisposes very
strongly (OR ~6) (15) and evidently biases
toward earlier onset of MG. In addition,
the sharp contrast between these risk as-
sociations in EOMG (15) and the protec-
tive associations in LOMG (and their
much greater strength for this -DQ allele
than for -B8 or -A1 [Table 3]) implies an
extra protective role for DQA1*0501 or
linked variants (for example, DRB1*03:01)
in LOMG. In both subgroups, the findings
also implicate each variant’s function in
presenting antigens to specific T cells (see
below). We postulate that the striking dif-

ferences in MHC region associations be-
tween LOMG and EOMG may in turn be
due to differences in the environmental
stimulus that presumably induces the
break in tolerance to AChR.

In some of our LOMG patients, we pre-
viously noted risk associations with
DRB1*15:01 (P = 7.4 × 10–5, OR 2.38) in
Norwegians (6) or with -DR2 and/or -B7
in British males (10). Although still evi-
dent in our larger present series, these as-
sociations are substantially weaker (for
example, DRB1*15:01, P = 3.1 × 10–3, OR
1.32), even just in the ~200 combined
Scandinavian and British males (P = 8.9 ×
10–3, OR 1.44). This difference may reflect
underlying heterogeneity within LOMG
and might best be clarified in further
studies with larger patient numbers with
onset before or after 1990, focusing sepa-
rately on males and females with or with-
out anti-titin or other autoantibodies
listed in Table 1 and with onset before or
after ages 40, 50, or 60 years, or even
higher.

In addition to the HLA-DQA1/DRB1 as-
sociations, there were independent signals
from the HLA-A and the MHC class III re-

gion. The HLA-A signal was due to two
risk-associated AAs as discussed below. In
class III, the associated SNPs are located
within introns of three genes: the read-
through transcript of the Dead box
polypeptide 39B and V-type proton
 ATPase subunit G2 (DDX39B-ATP6V1G2);
the nuclear factor of κ light polypeptide
gene enhancer in B-cells inhibitor-like 1
(NFKBIL1); and leukocyte-specific tran-
script 1 (LST1). NFKBIL1 and LST1 are po-
tential modulators of immune and auto-
immune responses. Moreover, the 50-kb
interval between these SNPs also contains
both tumor necrosis factor (TNF) and lym-
photoxin α (LTA), each of which are strong
candidate genes. Notably, differences in
macrophage expression of these class III
genes after stimulation reportedly associ-
ate with different LST1 haplotypes (53). Of
the three SNPs, only rs2071596 has a high
predicted regulatory function (RegulomeDB
score = 2b indicating TF binding + any TF
binding motif + DNase Footprint + DNase
peak). While another SNP (rs45457097;
RegulomeDB score = 2b) located in the
3′UTR of NFKBIL1 may be another func-
tional candidate, it was not imputed with
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Table 3. Classic HLA associations in LOMG and comparison with EOMG.

LOMG EOMG

Case Control Case Control
Allele frequency frequency P OR (95% CI) frequency frequency P OR (95% CI)

HLA-A*01:01 0.13 0.15 1.09 × 10–1 0.85 (0.70–1.04) 0.35 0.16 1.99 × 10–44 2.99 (2.57–3.49)
HLA-A*03:01 0.20 0.15 9.20 × 10–5 1.42 (1.19–1.69) 0.08 0.14 5.92 × 10–9 0.56 (0.46–0.68)
HLA-C*07:01 0.11 0.15 1.80 × 10–4 0.67 (0.54–0.83) 0.52 0.34 5.67 × 10–31 2.18 (1.91–2.48)
HLA-C*05:01 0.05 0.08 1.88 × 10–3 0.64 (0.47–0.86) 0.03 0.10 7.84 × 10–13 0.44 (0.35–0.55)
HLA-B*07:02 0.18 0.15 1.20 × 10–2 1.26 (1.05–1.50) 0.07 0.14 3.54 × 10–11 0.53 (0.44–0.64)
HLA-B*08:01 0.08 0.11 1.75 × 10–3 0.69 (0.54–0.88) 0.41 0.13 2.87 × 10–113 6.41 (5.46–7.53)
HLA-B*44:02 0.07 0.09 2.01 × 10–2 0.73 (0.56–0.96) 0.04 0.09 3.27 × 10–11 0.44 (0.35–0.56)
HLA-DRB1*03:01 0.06 0.12 6.70 × 10–8 0.50 (0.39–0.66) 0.35 0.13 9.69 × 10–74 4.70 (3.98–5.56)
HLA-DRB1*07:01 0.15 0.12 2.43 × 10–4 1.45 (1.19–1.76) 0.04 0.12 3.74 × 10–16 0.42 (0.34–0.52)
HLA-DRB1*13:01 0.03 0.07 1.90 × 10–7 0.39 (0.26–0.58) 0.04 0.06 3.18 × 10–04 0.60 (0.46–0.79)
HLA-DRB1*15:01 0.18 0.14 3.10 × 10–3 1.31 (1.10–1.57) 0.10 0.14 8.92 × 10–06 0.66 (0.55–0.79)
HLA-DQA1*05:01 0.15 0.24 5.92 × 10–12 0.54 (0.45–0.65) 0.43 0.24 3.63 × 10–45 2.82 (2.44–3.26)
HLA-DQA1*02:01 0.15 0.12 2.96 × 10–4 1.44 (1.19–1.75) 0.04 0.12 3.19 × 10–16 0.42 (0.35–0.52)
HLA-DQA1*01:03 0.04 0.07 4.31 × 10–6 0.48 (0.34–0.68) 0.04 0.07 7.34 × 10–04 0.64 (0.49–0.83)
HLA-DQB1*02 0.19 0.20 5.37 × 10–1 0.95 (0.80–1.12) 0.37 0.22 1.63 × 10–33 2.50 (2.16–2.90)
HLA-DQB1*02:01 0.06 0.12 1.23 × 10–7 0.52 (0.40–0.67) NA NA NA NA
HLA-DQB1*02:02 0.12 0.08 8.74 × 10–6 1.66 (1.33–2.06) NA NA NA NA

Results of LOMG with onset age ≥50 years are compared with results from our previous study of EOMG (15). Case and control antigen
frequencies are shown. The ORs and 95% CIs are shown for each HLA antigen except where not available (NA). Data were selected to
show the 10 most significant associations in the MG subgroups and also included DRB1*15:01 and HLA-B*07:01 for comparison with
previous studies (see Supplementary Table S6 for complete HLA analyses).



high confidence and could not be evalu-
ated by conditioning studies.

Previous studies have shown several in-
dependent signals within the MHC region
in multiple autoimmune diseases, includ-
ing RA and systemic lupus erythematosus
(54–57), and specifically with HLA-A in
type 1 diabetes (54). The data are less clear
for MHC class III because of the strong LD
there (Figure 4C). One study has sug-
gested a possible independent role for
DDX39B (formerly BAT1) in RA (58).

Conditional association tests using
specific HLA AA variants may also pro-
vide insights into possible functional cor-

relates. For DQA1, 130A (DQA1*05:01)
and 75I (DQA1*01:03) gave equivalent re-
sults to conditioning on all DQA1 anti-
gen genes. Structural modeling studies
suggested a critical role for AA 130 in
DQA1/DM interactions in peptide load-
ing (59). Because 75I protrudes into the
peptide-binding groove, it might affect
recognition of the bound peptides. Al-
though the data modestly favor DQA1
over DRB1, we also noted a strong effect
at AA position 11 in DRB1 (Table 4),
which is also critical in peptide binding.

For HLA-A, 70Q (present in HLA-
A*68:01, *03:01 and *11:01 and other

lower-frequency HLA-A AAs) and 152A or
152E (present in HLA-A*01:01, *03:01,
*11:01, *25:01 and *26:01) could account for
the signal and were risk variants. Interest-
ingly, these AAs have been implicated in
cytotoxic T-cell recognition of influenza A
epitopes (60) and may thus implicate envi-
ronmental provoking factors. The high
prevalence in LOMG of oligoclonal expan-
sions in both CD8+ and CD4+ T cells (61) is
another tantalizing hint that viruses might
be involved. Changes in exposure could
be relevant to the recent increase in inci-
dence of LOMG. In this regard, we did not
find any significant difference in associa-
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Table 4. Highlights of conditional analyses of the MHC region in LOMG.

HLA-A: 29510630-30465978 Class III: 30466879-31763744 Class II: 31765860-33005932

Lowest Lowest Lowest
residual residual residual

Conditioning P value Variant Position P value Variant Position P value Variant Position

None 1.00 × 10–11 rs150881176 29947740 4.11 × 10–12 rs2071591 31515799 3.13 × 10–17 rs111945767 32517045

rs111945767 2.24 × 10–8 rs150881176 29947740 1.17 × 10–7 6:31534010:D 31534010 7.91 × 10–4 rs204887 32029226

DRB1 3.26 × 10–8 rs150881176 29947740 8.33 × 10–7 rs2071596 31506691 5.58 × 10–5 rs9501624 32399286

DQA1 1.78 × 10–8 rs150881176 29947740 1.77 × 10–7 rs2256974 31555392 1.11 × 10–3 rs147008997 32447598

DQB1 1.84 × 10–9 rs115207654 29942293 7.19 × 10–8 rs2071591 31515799 9.52 × 10–8 DQA1_AA107_I 32609806

HLA-A 1.16 × 10–4 rs1632958 29688643 2.40 × 10–10 rs2071591 31515799 7.02 × 10–16 rs111945767 32517045

HLA-B 2.82 × 10–8 rs150881176 29947740 3.17 × 10–8 rs116706902 31529335 6.85 × 10–13 rs111938555 32509707

HLA-C 6.99 × 10–8 rs150881176 29947740 2.68 × 10–6 rs2071591 31515799 3.75 × 10–12 rs112780983 32511348

DRB1, HLA-A, 2.55 × 10–3 rs1632958 29688643 4.15 × 10–4 rs138758805 31533722 1.57 × 10–5 rs9501624 32399286
Class III SNP

DQA1, HLA-A, 2.18 × 10–3 6:30014294:I 30014294 2.16 × 10–3 rs12665489 31507987 2.96 × 10–3 chr6:31834138 31834138
Class III SNP

DQA1, HLA-A, HLA-C 2.52 × 10–3 6:30014294:I 30014294 4.20 × 10–5 rs2071596 31506691 4.08 × 10–3 rs28732173 32071010

DRB1_AA11, A_AA70, 2.34 × 10–4 rs150881176 29947740 7.05 × 10–4 rs12665489 31507987 2.19 × 10–4 rs114053271 32535948
Class III SNP

DQA1_AA75, 5.42 × 10–4 rs114705891 29990708 1.57 × 10–3 rs12665489 31507987 3.12 × 10–3 rs6907185 31844684
DQA1_AA130, 
A_AA70, Class III SNP

DQA1 AA75, 1.95 × 10–3 rs150881176 29947740 2.06 × 10–3 rs12665489 31507987 3.40 × 10–3 rs143832718 32287072
DQA1 AA130, 
A_AA70, A_AA152, 
Class III SNP

The most significant P value for each condition is shown for each of the three regions with signal peaks (Figure 5). The most significant
P value for each condition (row) is shown in bold. Gray shading indicates where the signal has been attenuated above P = 5 × 10–5. The
class III SNP included in the conditioning is rs2071596, but nearly equivalent results are obtained with rs6929796 or rs2256974. For some of
the AAs indicated in this table, others gave nearly identical results: 130A was in complete LD with 41K, and 75I was in nearly complete LD with
AAs at multiple positions (40, 47, 50, 51, 53, 107, 156, 161, 163, and 175). For these studies, conditioning was performed using all HLA antigens
for each gene that had nominally significant P values (P < 0.05). For AAs, we individually conditioned on each AA (in DQA1, DRB1 and
HLA-A) that had nominal P values <0.001. Results are for those AAs with the strongest attenuation of the association signals.



tion signals when we subdivided LOMG
cases with onset before or after 1990 (data
not shown).

When we compared associations in
males and females, none of the differences
proved significant (Z scores with P values
>0.4), but the effect sizes for the HLA asso-
ciations were larger in the LOMG males,
whereas they were significantly higher in
the females with EOMG (15). Outside of
the MHC, we observed a significant asso-
ciation with PTPN22 only in males with
LOMG. By contrast, effect sizes for the
ZBTB10-linked SNP were almost identical
in males and females. Confirmation of
these potential differences might imply
stronger genetic and/or hormonal influ-
ences on MG susceptibility in younger fe-
males and older males. Sexual dimor-
phism and the potential role of X
chromosome genes have been emphasized
in other studies of autoimmunity (40,62).

In our patients with generalized and
pure ocular AChR-Ab–positive LOMG,
we also found broadly similar ORs for
the associated SNPs, in both HLA and
other regions (Supplementary Table S8).
This finding may not be surprising, since
neurotransmission is impaired in periph-
eral muscles in nearly all patients with
AChR-Ab–positive pure ocular LOMG
when tested by sensitive single-fiber
electromyography, just as in generalized
AChR-Ab–positive LOMG, but unlike in
AChR-Ab–negative ocular MG (63–65).

Finally, this study has not detected asso-
ciations with several genes previously im-
plicated in EOMG and MG. These include
TNIP1 and such possible candidates as
STAT4, IKZF1, IRF5, NKX2-3, ORMDL3,
CD226 and PPG1 (15). We also found no
firm evidence for the CTLA4 associations
previously reported in MG (5,16). Simi-
larly, for the LOMG-associated genes,
ZBTB10 and TNFRSF11A, there was no
suggestion of association in our previous
EOMG study (15).

Our study has several limitations. First,
the sample size limited power to identify
loci with relatively modest effect sizes. This
finding was also partially compounded by
the incomplete ability to impute all vari-
ants in the 1,000-genome resource at a high

confidence (r2 > 0.8). Second, control geno-
types were obtained from disparate
sources. This result was mitigated by our
assessment and matching strategy based
on PCA as well as including appropriate
covariates to account for differences in
population substructure and genotyping
platform. Finally, an independent replica-
tion was precluded by the small numbers
of these uncommon patients.

CONCLUSION
The data presented here provide com-

pelling evidence that LOMG has a differ-
ent genetic basis from EOMG. The bi-
modal distribution of onset ages of MG,
and the similar results with cutoffs ≥50
and ≥60 years for LOMG (except for di-
minished power), together with previous
studies, suggest that a cutoff age of onset
of ≥50 years is a useful criterion for future
investigative and clinical studies. The
study confirms that a variant of 
TNFRSF11A is a risk factor for LOMG and
defines independent associations with
specific MHC class 1, class 2 and class 3
polymorphisms. Additional replication
studies are warranted to further support
the novel identification of ZBTB10 as an
LOMG risk factor, and larger sample sets
using strict phenotypic definitions, as well
as directed functional studies, will be nec-
essary to further unravel the complex ge-
netics of different forms of MG.
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