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between diagnoses. Finally, single-code 
approaches do not capture disease sub-
types with different genetic architecture, 
where these subtypes may be reflected 
in different patterns of comorbidity, as a 
recent investigation of diabetes mellitus 
suggests (5–8).

Here, we describe a method for ad-
dressing the problem of mapping genetic 
space to high-dimensional phenotype 
space that leverages comorbidity and 
diagnostic uncertainty to allow efficient 
genome-wide or single-locus association. 
This approach facilitates association by 
capturing diagnostic co-occurrence pat-
terns to reduce dimensionality, thereby 
decreasing the number of hypotheses 
being tested, while increasing power by 
including individuals who may have 
different manifestations of the same 
underlying pathology. Specifically, we 
apply latent Dirichilet allocation (LDA), 
a means of identifying commonly co-
occurring features, to derive a set of 50 
disease topics. Then we test those topics 
for association with common genetic 
variation and compare this approach to 

capture a given diagnosis varies widely, 
even when diagnosis-specific classifiers 
are applied to augment single codes 
(2,3). As such, approaches that focus on 
individual diagnostic codes are limited 
by inaccurate, missing or heterogeneous 
diagnoses; eg, where individuals with 
cystic fibrosis might be represented by 
male infertility, diabetes and chronic rhi-
nosinusitis even in the absence of a diag-
nostic code for cystic fibrosis (4). Second, 
under conditions of pleiotropy, where a 
single variant contributes to risk for mul-
tiple disorders, as in some autoimmune 
and neuropsychiatric disorders, standard 
phenome-wide approaches do not make 
efficient use of the correlation structure 

INTRODUCTION
In the search for common genetic 

variations associated with medical dis-
orders, the traditional analytic approach 
examines single disorders in case-control 
cohorts ascertained for a specific disor-
der. With the availability of large-scale 
biobanks with broad ascertainment, 
multiple approaches to phenome-wide 
association – ie, looking across a range 
of clinical phenotypes to detect genetic 
association – have been proposed (1). 
However, relying on individual disor-
ders represented in diagnostic codes 
may not efficiently capture the under-
lying architecture of genetic risk. First, 
the ability of claims codes to accurately 
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standard methods using single Interna-
tional Classification of Diseases, Ninth 
Revision (ICD-9)/phenome-wide associ-
ation studies (PheWAS) codes (9).

MATERIALS AND METHODS

Cohort Derivation and Genotyping
We drew on three cohorts of patients 

seen in the Brigham and Women’s 
Hospital network and the Massachusetts 
General Hospital network, representing 
the first 15,064 individuals genotyped 
as part of the Partners HealthCare Bio-
bank initiative (10). These individuals 
provided informed consent for their 
electronic health records (EHRs) to be 
examined in investigations approved by 
the Partners Institutional Review Board, 
and provided blood samples for DNA 
extraction.

DNA was extracted from buffy coat 
and genotyped using the Illumina Ex-
panded Multi-Ethnic Genotyping Array 
(MEGA or MEGA-EX) platforms, with 
common variant arrays incorporating con-
tent from the 1000 Genomes Project Phase 
3. Single nucleotide polymorphism (SNP) 
coordinates were remapped based on the 
TopGenomicSeq provided from Illumina 
(MEGA_Consortium_v2_15070954_
A2.csv); all rsIDs correspond to build 
142 of dbSNP. To determine the forward 
strand of the SNP, we aligned both SNP 
sequences (alleles A and B) to hg19 using 
BLAT with default parameters set by 
the University of California, Santa Cruz 
Genome Browser (11).

Quality Control and Imputation
Genotyping was done using three 

versions of the Illumina Multi-Ethnic 
Global (MEG) array (MEGA n = 4927, 
MEGA EX n = 5353, MEG n = 4784; 
mappable variants available for each 
were 1,411,334, 1,710,339 and 1,747,639, 
respectively). Each cohort was cleaned, 
imputed and analyzed separately to 
avoid batch effects. For each batch, we 
included subjects with genotyping call 
rates exceeding 99%; no related individu-
als based on identity by descent were in-
cluded (12). From these individuals, any 

genotyped SNP with a call rate of at least 
95%, minor allele frequency of 0.01 or 
greater and Hardy-Weinberg equilibrium 
p value < 1 × 10–6 was included. We then 
imputed using the Michigan Imputation 
Server implementing Minimac3 (13–15). 
Imputation used all population subsets 
from the 1000 Genomes Project Phase 3 
v5 as reference panel; haplotype phasing 
was performed using SHAPEIT (16).

Ancestry
For each cohort, we used principal 

components analysis of linkage-dis-
equilibrium-pruned genotyped SNPs to 
characterize population structure, based 
on EIGENSTRAT, as implemented in 
PLINK v1.9, and plotted these compo-
nents with superimposition of HapMap 
samples to confirm locations of northern 
European individuals (17–19). Limiting 
the analysis to these individuals yielded 
3,728 + 3,402 + 3,715 = 10,845 analyzable 
participants.

Topic Identification
For both cohorts, ICD-9 diagnosis 

codes extracted from each individual’s 
medical record were grouped into 1,667 
PheWAS codes corresponding to clin-
ically meaningful disease categories, 
with the total number of codes within 
each PheWAS category preserved (20). 
Initial model fitting was performed using 
cohort 1 only, with cohort 2 preserved 
as an out-of-sample test set. To fit the 
topic model cohort, the PheWAS code 
count by subject matrix was frequency-
controlled to eliminate PheWAS codes 
that occurred in < 1% or > 99% of sub-
jects. After frequency control, 508 distinct 
PheWAS codes were used for the initial 
unsupervised learning step of model fit.

The PheWAS code count by subject 
matrix for cohort 1 was used to train an 
LDA model with 50 topics (9). LDA is 
a form of unsupervised machine learn-
ing typically found in natural language 
processing (NLP). As topic modeling 
is drawn from the NLP literature, this 
preprocessing can be conceptualized as 
treating each subject’s medical record as 
a document composed of ICD-9 codes 

that are lemmatized to PheWAS codes 
and thereafter analyzed as a term-count 
document matrix. LDA postulates that 
the words of a document are a mixture 
of underlying topics, and documents are 
composed of each of these topics to vary-
ing degrees. The resulting trained LDA 
model is a distribution of all PheWAS 
codes over each topic. This distribution 
can be used to score each collection of 
PheWAS codes for membership in each 
of the topics. In the case of illness in a 
biobank, we use LDA to model biology 
as a collection of topics or underlying 
generator processes of observable, but 
potentially overlapping and incom-
pletely penetrant, pathological states. 
These states are captured as PheWAS 
“words.” Having trained the topic model 
on cohort 1, this model was then used to 
score each subject in cohort 1 for mem-
bership in each of the topics (in-sample) 
and each subject in cohort 2 for member-
ship in each of the topics (out-of-sample). 
To perform the PheWAS LDA, we used 
the Gensim implementation of the LDA 
algorithm (21,22).

There is no widely accepted method 
for naming topics, since by definition all 
PheWAS words arise from all topics at 
some probability, albeit a vanishingly 
small probability in many cases. To aid 
in interpretability, in our discussion of 
results we name topics subjectively in 
terms of the preponderance of codes 
represented toward the top of the list, as 
interpreted by the two physician authors 
(THM, RHP); we refer to them below as 
“topic-name-plus,” as a reminder to the 
reader that the topic contains more than 
just a single diagnosis and may contain 
apparently unrelated terms.

Analysis
Single-locus associations in each co-

hort were examined individually, and 
then combined in inverse variance–
weighted fixed-effects meta-analyses. 
In these analyses, only bi-allelic SNPs 
with minor allele frequencies of at least 
1% were retained. Tests for association 
used linear regression assuming an ad-
ditive allelic effect, treating each topic 
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pulmonary disease, as well as multiple  
apparently novel disease loci for preg-
nancy complications, viral susceptibil-
ity, anemia/fracture risk and uterine 
cancer not previously associated at a 
genome-wide threshold with disease 
(based on searching the National Human 
Genome Research Institute–European 
Bioinformatics Institute Catalog of 
published genome-wide association 
studies) (25). We compared our results 
to those arising from a standard single-
diagnostic-code PheWAS; this approach 
would not have yielded association at 
this threshold. Moreover, omitting either 
the head or the tail of each topic (ie, the 
most- or least-weighted diagnosis) elim-
inates the association, suggesting that 
the observed effect does not arise from a 
small number of codes.

The identification of robust asso-
ciations with loci implicated in prior 
genome-wide association studies demon-
strates convergent validity (27,28). We 
demonstrate that this approach more ef-
ficiently detects these known associations 
(based on magnitude of p value) than 
single-code association. That is, simply 
incorporating a single ICD9/PheWAS 
code yielded weaker evidence of associ-
ation. These loci and the sensitivity anal-
ysis associated with topic pruning (head 
and tail distributions; Table 1, Figure 1) 
function as positive controls and illustra-
tions of assay sensitivity.

In nearly all cases, we note that the 
strongest associations are identified by 
incorporating all codes loading on a 
topic, rather than limiting the analysis to 
only the most strongly loading. Indeed, 
we observe that omitting such strongly 
loaded codes does not necessarily reduce 
the magnitude of association. Interest-
ingly, there is only one example where a 
single code yielded an association nearly 
as robust as that observed with the topic, 
rheumatoid arthritis-plus, which may 
reflect the distinct genetic architecture of 
this disorder compared with some others.

In lieu of looking across phenotypes, 
a recent report describes a method to 
identify disease subtypes based upon 
network analysis (29). Our approach is 

each of the 50 topics, a total of 56 loci 
spanning 24 topics included at least one 
SNP with p < 1e-11; 39 of these loci across 
22 topics included at least one additional 
associated SNP at p < 0.01. Table 1 re-
ports the physical position, annotation 
and association for the most strongly 
associated SNPs for topics with at least 
one p < 5e-15 and at least two associated 
SNPs in a given locus, while Supplemen-
tary Table S1 reports the 10 most associ-
ated independent SNPs for all 50 topics 
(for effects by cohort, see Supplementary 
Table S2). The strongest associations (all 
p < 1e-15) were observed for pulmonary 
disease/cystic fibrosis-plus, anemia 
and fracture-plus, rheumatoid arthri-
tis-plus, pregnancy complications-plus, 
uterine neoplasm-plus, viral-plus, 
neoplasm-plus, adrenal and electrolyte 
disorders-plus, and pituitary and adre-
nal disorder-plus. Figures 1 and 2 show 
Manhattan and locus plots for pulmonary 
disease/cystic fibrosis-plus and neo-
plasm-plus; for plots for the remainder 
of these, see Supplementary Materials. 
Diagnostic codes loading most strongly 
for each of these topics are listed in 
Table 2; for the codes loading on all 50 
topics, see Supplementary Table S3.

We also examined (Table 3) the effect 
of three alternate phenotypic definitions: 
examining the topic “tail” only (ie, di-
agnostic codes with weights < 0.05, the 
“tail” of the list) or the topic “head” only 
(ie, diagnostic codes with weights > 0.01, 
the “head” of the list) and including 
only the single top-weighted diagnostic 
code (ie, a standard single diagnosis as-
sociation). This last comparison allows 
direct contrast with nominal associations 
returned by traditional PheWAS, recog-
nizing that here only 50 phenotypes are 
examined rather than 500 or more.

DISCUSSION
We applied a topic-modeling approach 

to identify 50 groups of diagnostic codes 
in biobank-associated EHR data and then 
used genome-wide data to examine com-
mon-variant associations for each topic. 
With this novel approach, we identified 
multiple known loci for autoimmune and 

as a quantitative trait and adjusting 
for the first 10 principal components 
a priori (analyses incorporating 5 or 20 
components did not yield meaningfully 
different results). Association results are 
presented in terms of independent loci 
after pruning, using the clump command 
in PLINK 1.9, with a 250kb window and 
r2 = 0.2. We present uncorrected p values, 
but elected to focus on p values less than 
1e-15 and loci with at least two associ-
ated SNPs (23).

To facilitate comparisons across top-
ics and methods, reported p values are 
not adjusted for linkage disequilibrium 
scores. Adjustment for lambda-1000 or 
linkage disequilibrium score regression 
intercept did not meaningfully change 
relative results; lambda values range 
from 0.990 to 1.017 λ across topics (24).

Secondary analyses examined alternate 
topic-based phenotypes in which either 
the most strongly loading diagnostic 
codes (ie, those with loading > 0.05) or 
least strongly loading diagnostic codes 
(ie, those with loading < 0.01) for a given 
topic were omitted, as a means of un-
derstanding the relative contributions 
of these sets of codes. These analyses 
utilized the same approach as for the pri-
mary analysis of topics. For comparison, 
we also examined association with the 
presence or absence of the single most 
strongly loading diagnostic code in each 
topic, using logistic regression.

All supplementary materials are available 
online at www.molmed.org.

RESULTS
After exclusions for genotyping qual-

ity control, relatedness and ancestry, 
cohorts 1, 2 and 3 included 2,141/3,728 
(57.4%), 1,690/3,402 (49.7%) and 
2,089/3,715 (56.23%) female participants, 
respectively. Mean ages were 57.9 (stan-
dard deviation [SD] 16.2), 62.4 (SD 16.0) 
and 59.4 (SD 16.5).

After imputation, a total of 7,781,941 
SNPs with minor allele frequency (MAF) 
of 0.01 or greater were analyzed for each 
of the 50 topics and meta-analyzed. After 
genome-wide association analysis for 
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not directly comparable, but may also be 
valuable in identifying subtypes in the 
case where a given diagnosis is geneti-
cally heterogeneous but the presence of 
comorbidities helps to define more homo-
geneous groups. A major advantage of the 
present approach compared with other 
unsupervised methods (eg, deep learning) 
is inspectability: it yields a weighted list 
of diagnostic codes. This inspectability 
enhances biological utility, as it allows post 
hoc clarification of the results, as illustrated 
by the sensitivity analysis. While we de-
scribe its application for genomics, it may 
be useful for other approaches drawing on 
coded EHR data where diagnostic codes 
do not definitively identify a diagnosis or 
subtype. Notably, it should also be possi-
ble to further extend the utility of our ap-
proach by incorporating additional coded 
or uncoded data – concepts extracted by 
NLP, for example – where such data are 
available.

The gain in statistical power afforded 
by this approach is apparent. For a ge-
notypic risk ratio of 1.5 with a minor 
allele frequency of 25% and a disease 
prevalence of 5%, nearly 80,000 cases 
are required to achieve 80% power after 
Bonferroni correction for 500 PheWAS 
phenotypes, versus nearly 800 cases 
with 50 topics, if each is analyzed as a 
dichotomous outcome. In reality, the 
increased case reliability that arises from 
integrating across related codes likely 
renders these estimates conservative, in 
some cases markedly so. Empirically, 
our results show that in no case would 
a single-code association have yielded 
stronger nominal association, indepen-
dent of Bonferroni correction, than the 
topic-based association, and in most 
cases the association was markedly less.

Still, we note several important lim-
itations. From a modern genomics per-
spective, the present cohorts are likely 
insufficient to robustly detect all but 
the largest associations. They are, how-
ever, large enough to demonstrate the 
feasibility and efficiency of using aggre
gated groups of diagnoses as an efficient 
complement to phenome-wide associa-
tion. Additionally, the biobank cohorts 

Figure 1. Manhattan plots for two example topics: (A) pulmonary disease/cystic fibrosis-plus 
and (B) neoplasm-plus.
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they may also illustrate the power of 
topic modeling to detect co-occurring 
diagnoses where the physiologic rela-
tionship is not otherwise recognized. 

We note that the topics in many cases 
include codes seemingly unrelated to 
the predominant diagnosis; while these 
may represent type I error or noise, 

studied here are insufficient to examine 
these associations in non–northern Eu-
ropean populations; replication in other 
populations would be informative. 

Figure 2. Locus plots for two example topics: (A) pulmonary disease/cystic fibrosis-plus and (B) neoplasm-plus.
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Our analysis of topic “heads” and “tails” 
suggests that, in most cases, topics are 
not well captured by a single code or 
small number of codes. As such, the 
names we apply represent a best guess 
at interpretation, and investigation of 
the mechanism of overlap (in vivo or in 
silico) represents an important next step. 
In particular, consideration of orthogonal 
biological data, such as investigating 
pathways or expression quantitative 
trait loci, could further clarify the way 
in which groups of associated diagnoses 
relate to one another mechanistically.

CONCLUSION
In sum, our results indicate the utility 

of an approach to large-scale biobank data 
that aggregates over groups of diagnostic 
codes by treating groups of codes as relat-
ing to underlying topics. This approach is 
superior to single-code association for di-
agnoses with shared liability or groups of 
diagnostic codes that more reliably iden-
tify an underlying phenotype. It identifies 
multiple apparently novel disease loci 
while replicating existing associations, and 
suggests multiple other regions as well as 

Table 3. Sensitivity analysis examining alternate phenotypes omitting the most- or least-strongly loading diagnoses 

Topic # Topic name CHR SNP P value
Full topic

(all diagnoses)

P values in sensitivity analysis
Topic head
(diagnoses 

loading ≥0.01)

Topic tail
(diagnoses 

loading ≤0.05)

Single diagnosis
(only top 
diagnosis)

19 Pulmonary disease and cystic fibrosis-plus 7 7:117277554 1.049E-42 1.121E-4 7.178E-11 0.02882
19 Pulmonary disease and cystic fibrosis-plus 7 7:116967838 3.005E-32 1.686E-3 4.765E-3 0.0518
09 Anemia and fracture-plus 4 4:12459496 5.985E-29 0.3539 6.102E-51 *
24 Rheumatoid arthritis-plus 6 6:32570417 2.14E-28 2.895E-20 0.2878 7.586E-19
16 Pregnancy complications-plus 5 5:32198317 2.852E-20 0.1513 6.545E-44 *
19 Pulmonary disease and cystic fibrosis-plus 7 7:117220403 2.055E-19 4.268E-4 1.114E-08 0.05133
22 Uterine neoplasm-plus 14 14:62132727 3.294E-19 0.2401 0.7799 6.231E-3
07 Viral-plus 14 14:57647875 7.58E-19 0.3954 0.3554 *
22 Uterine neoplasm-plus 6 6:148020784 7.105E-18 0.5184 3.387E-3 5.874E-3
24 Rheumatoid arthritis-plus 6 6:32681992 9.832E-18 4.413E-14 0.2 4.409E-11
40 Neoplasm-plus 3 3:1145301 1.962E-17 9.212E-4 3.945E-6 0.01377
22 Uterine neoplasm-plus 2 2:209079758 7.645E-17 0.1993 0.8465 *
01 Adrenal and electrolyte-plus 4 4:41059660 1.813E-16 0.01646 0.1058 *
22 Uterine neoplasm-plus 4 4:84272944 1.993E-16 0.02548 0.8802 *
25 Pituitary and adrenal disease-plus 18 18:25741737 3.269E-16 0.06459 0.078 0.07633
24 Rheumatoid arthritis-plus 6 6:32303848 3.558E-16 5.129E-14 0.118 3.344E-13
07 Viral-plus 8 8:58987251 4.165E-16 0.01557 0.8416 0.09888

*Sparseness of single diagnosis code and low MAF precludes estimate.
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