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Efficient Genome-wide Association in Biobanks Using Topic
Modeling Identifies Multiple Novel Disease Loci
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Biobanks and national reyistries represent a powerful tool for genomic discovery, but rely on diagnostic codes that can be
unreliable and fail to capture relationships between related diagnoses. We developed an efficient means of conducting ye-
nome-wide association studies using combinations of diagnostic codes from electronic health records for 10,845 participants in a
biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease
topics based on diagnostic codes, then conducted a yenome-wide common-variant association for each topic. In sensitivity
analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analy-
sis, as well as those in which only a subset of diagnostic codes were included per topic. In meta-analysis across three biobank
cohorts, we identified 23 disease-associated loci with p < Te-15, including previously associated autoimmune disease loci. In all
cases, observed significant associations were of greater maynitude than single phenome-wide diagnostic codes, and incorporo-
tion of less strongly loading diagnostic codes enhanced association. This strateyy provides a more efficient means of identifyinyg
phenome-wide associations in biobanks with coded clinical data.
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INTRODUCTION

In the search for common genetic
variations associated with medical dis-
orders, the traditional analytic approach
examines single disorders in case-control
cohorts ascertained for a specific disor-
der. With the availability of large-scale
biobanks with broad ascertainment,
multiple approaches to phenome-wide
association — ie, looking across a range
of clinical phenotypes to detect genetic
association — have been proposed (1).
However, relying on individual disor-
ders represented in diagnostic codes
may not efficiently capture the under-
lying architecture of genetic risk. First,
the ability of claims codes to accurately

capture a given diagnosis varies widely,
even when diagnosis-specific classifiers
are applied to augment single codes
(2,3). As such, approaches that focus on
individual diagnostic codes are limited
by inaccurate, missing or heterogeneous
diagnoses; eg, where individuals with
cystic fibrosis might be represented by
male infertility, diabetes and chronic rhi-
nosinusitis even in the absence of a diag-
nostic code for cystic fibrosis (4). Second,
under conditions of pleiotropy, where a
single variant contributes to risk for mul-
tiple disorders, as in some autoimmune
and neuropsychiatric disorders, standard
phenome-wide approaches do not make
efficient use of the correlation structure
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between diagnoses. Finally, single-code
approaches do not capture disease sub-
types with different genetic architecture,
where these subtypes may be reflected
in different patterns of comorbidity, as a
recent investigation of diabetes mellitus
suggests (5-8).

Here, we describe a method for ad-
dressing the problem of mapping genetic
space to high-dimensional phenotype
space that leverages comorbidity and
diagnostic uncertainty to allow efficient
genome-wide or single-locus association.
This approach facilitates association by
capturing diagnostic co-occurrence pat-
terns to reduce dimensionality, thereby
decreasing the number of hypotheses
being tested, while increasing power by
including individuals who may have
different manifestations of the same
underlying pathology. Specifically, we
apply latent Dirichilet allocation (LDA),
a means of identifying commonly co-
occurring features, to derive a set of 50
disease topics. Then we test those topics
for association with common genetic
variation and compare this approach to
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standard methods using single Interna-
tional Classification of Diseases, Ninth
Revision (ICD-9)/phenome-wide associ-
ation studies (PheWAS) codes (9).

MATERIALS AND METHODS

Cohort Derivation and Genotyping

We drew on three cohorts of patients
seen in the Brigham and Women’s
Hospital network and the Massachusetts
General Hospital network, representing
the first 15,064 individuals genotyped
as part of the Partners HealthCare Bio-
bank initiative (10). These individuals
provided informed consent for their
electronic health records (EHRSs) to be
examined in investigations approved by
the Partners Institutional Review Board,
and provided blood samples for DNA
extraction.

DNA was extracted from buffy coat
and genotyped using the Illumina Ex-
panded Multi-Ethnic Genotyping Array
(MEGA or MEGA-EX) platforms, with
common variant arrays incorporating con-
tent from the 1000 Genomes Project Phase
3. Single nucleotide polymorphism (SNP)
coordinates were remapped based on the
TopGenomicSeq provided from Illumina
(MEGA_Consortium_v2_15070954_
A2.csv); all 1sIDs correspond to build
142 of dbSNP. To determine the forward
strand of the SNP, we aligned both SNP
sequences (alleles A and B) to hg19 using
BLAT with default parameters set by
the University of California, Santa Cruz
Genome Browser (11).

Quality Control and Imputation
Genotyping was done using three
versions of the Illumina Multi-Ethnic
Global (MEG) array (MEGA n = 4927,
MEGA EX n = 5353, MEG n = 4784;
mappable variants available for each
were 1,411,334, 1,710,339 and 1,747,639,
respectively). Each cohort was cleaned,
imputed and analyzed separately to
avoid batch effects. For each batch, we
included subjects with genotyping call
rates exceeding 99%; no related individu-
als based on identity by descent were in-
cluded (12). From these individuals, any

genotyped SNP with a call rate of at least
95%, minor allele frequency of 0.01 or
greater and Hardy-Weinberg equilibrium
p value < 1 x 10™° was included. We then
imputed using the Michigan Imputation
Server implementing Minimac3 (13-15).
Imputation used all population subsets
from the 1000 Genomes Project Phase 3
v5 as reference panel; haplotype phasing
was performed using SHAPEIT (16).

Ancestry

For each cohort, we used principal
components analysis of linkage-dis-
equilibrium-pruned genotyped SNPs to
characterize population structure, based
on EIGENSTRAT, as implemented in
PLINK v1.9, and plotted these compo-
nents with superimposition of HapMap
samples to confirm locations of northern
European individuals (17-19). Limiting
the analysis to these individuals yielded
3,728 + 3,402 + 3,715 = 10,845 analyzable
participants.

Topic Identification

For both cohorts, ICD-9 diagnosis
codes extracted from each individual’s
medical record were grouped into 1,667
PheWAS codes corresponding to clin-
ically meaningful disease categories,
with the total number of codes within
each PheWAS category preserved (20).
Initial model fitting was performed using
cohort 1 only, with cohort 2 preserved
as an out-of-sample test set. To fit the
topic model cohort, the PheWAS code
count by subject matrix was frequency-
controlled to eliminate PheWAS codes
that occurred in < 1% or > 99% of sub-
jects. After frequency control, 508 distinct
PheWAS codes were used for the initial
unsupervised learning step of model fit.

The PheWAS code count by subject
matrix for cohort 1 was used to train an
LDA model with 50 topics (9). LDA is
a form of unsupervised machine learn-
ing typically found in natural language
processing (NLP). As topic modeling
is drawn from the NLP literature, this
preprocessing can be conceptualized as
treating each subject’s medical record as
a document composed of ICD-9 codes
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that are lemmatized to PheWAS codes
and thereafter analyzed as a term-count
document matrix. LDA postulates that
the words of a document are a mixture
of underlying topics, and documents are
composed of each of these topics to vary-
ing degrees. The resulting trained LDA
model is a distribution of all PheWAS
codes over each topic. This distribution
can be used to score each collection of
PheWAS codes for membership in each
of the topics. In the case of illness in a
biobank, we use LDA to model biology
as a collection of topics or underlying
generator processes of observable, but
potentially overlapping and incom-
pletely penetrant, pathological states.
These states are captured as PheWAS
“words.” Having trained the topic model
on cohort 1, this model was then used to
score each subject in cohort 1 for mem-
bership in each of the topics (in-sample)
and each subject in cohort 2 for member-
ship in each of the topics (out-of-sample).
To perform the PheWAS LDA, we used
the Gensim implementation of the LDA
algorithm (21,22).

There is no widely accepted method
for naming topics, since by definition all
PheWAS words arise from all topics at
some probability, albeit a vanishingly
small probability in many cases. To aid
in interpretability, in our discussion of
results we name topics subjectively in
terms of the preponderance of codes
represented toward the top of the list, as
interpreted by the two physician authors
(THM, RHP); we refer to them below as
“topic-name-plus,” as a reminder to the
reader that the topic contains more than
just a single diagnosis and may contain
apparently unrelated terms.

Analysis

Single-locus associations in each co-
hort were examined individually, and
then combined in inverse variance—
weighted fixed-effects meta-analyses.
In these analyses, only bi-allelic SNPs
with minor allele frequencies of at least
1% were retained. Tests for association
used linear regression assuming an ad-
ditive allelic effect, treating each topic



as a quantitative trait and adjusting

for the first 10 principal components

a priori (analyses incorporating 5 or 20
components did not yield meaningfully
different results). Association results are
presented in terms of independent loci
after pruning, using the clump command
in PLINK 1.9, with a 250kb window and
1* = 0.2. We present uncorrected p values,
but elected to focus on p values less than
le-15 and loci with at least two associ-
ated SNPs (23).

To facilitate comparisons across top-
ics and methods, reported p values are
not adjusted for linkage disequilibrium
scores. Adjustment for lambda-1000 or
linkage disequilibrium score regression
intercept did not meaningfully change
relative results; lambda values range
from 0.990 to 1.017 A across topics (24).

Secondary analyses examined alternate
topic-based phenotypes in which either
the most strongly loading diagnostic
codes (ie, those with loading > 0.05) or
least strongly loading diagnostic codes
(ie, those with loading < 0.01) for a given
topic were omitted, as a means of un-
derstanding the relative contributions
of these sets of codes. These analyses
utilized the same approach as for the pri-
mary analysis of topics. For comparison,
we also examined association with the
presence or absence of the single most
strongly loading diagnostic code in each
topic, using logistic regression.

All supplementary materials are available
online at www.molmed.org.

RESULTS

After exclusions for genotyping qual-
ity control, relatedness and ancestry,
cohorts 1, 2 and 3 included 2,141/3,728
(57.4%), 1,690/3,402 (49.7%) and
2,089/3,715 (56.23%) female participants,
respectively. Mean ages were 57.9 (stan-
dard deviation [SD] 16.2), 62.4 (SD 16.0)
and 59.4 (SD 16.5).

After imputation, a total of 7,781,941
SNPs with minor allele frequency (MAF)
of 0.01 or greater were analyzed for each
of the 50 topics and meta-analyzed. After
genome-wide association analysis for

each of the 50 topics, a total of 56 loci
spanning 24 topics included at least one
SNP with p < 1e-11; 39 of these loci across
22 topics included at least one additional
associated SNP at p < 0.01. Table 1 re-
ports the physical position, annotation
and association for the most strongly
associated SNPs for topics with at least
one p < 5e-15 and at least two associated
SNPs in a given locus, while Supplemen-
tary Table S1 reports the 10 most associ-
ated independent SNPs for all 50 topics
(for effects by cohort, see Supplementary
Table S2). The strongest associations (all
p < le-15) were observed for pulmonary
disease/ cystic fibrosis-plus, anemia

and fracture-plus, rheumatoid arthri-
tis-plus, pregnancy complications-plus,
uterine neoplasm-plus, viral-plus,
neoplasm-plus, adrenal and electrolyte
disorders-plus, and pituitary and adre-
nal disorder-plus. Figures 1 and 2 show
Manhattan and locus plots for pulmonary
disease/cystic fibrosis-plus and neo-
plasm-plus; for plots for the remainder
of these, see Supplementary Materials.
Diagnostic codes loading most strongly
for each of these topics are listed in
Table 2; for the codes loading on all 50
topics, see Supplementary Table S3.

We also examined (Table 3) the effect
of three alternate phenotypic definitions:
examining the topic “tail” only (ie, di-
agnostic codes with weights < 0.05, the
“tail” of the list) or the topic “head” only
(ie, diagnostic codes with weights > 0.01,
the “head” of the list) and including
only the single top-weighted diagnostic
code (ie, a standard single diagnosis as-
sociation). This last comparison allows
direct contrast with nominal associations
returned by traditional PheWAS, recog-
nizing that here only 50 phenotypes are
examined rather than 500 or more.

DISCUSSION

We applied a topic-modeling approach
to identify 50 groups of diagnostic codes
in biobank-associated EHR data and then
used genome-wide data to examine com-
mon-variant associations for each topic.
With this novel approach, we identified
multiple known loci for autoimmune and
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pulmonary disease, as well as multiple
apparently novel disease loci for preg-
nancy complications, viral susceptibil-
ity, anemia/fracture risk and uterine
cancer not previously associated at a
genome-wide threshold with disease
(based on searching the National Human
Genome Research Institute-European
Bioinformatics Institute Catalog of
published genome-wide association
studies) (25). We compared our results
to those arising from a standard single-
diagnostic-code PheWAS; this approach
would not have yielded association at
this threshold. Moreover, omitting either
the head or the tail of each topic (ie, the
most- or least-weighted diagnosis) elim-
inates the association, suggesting that
the observed effect does not arise from a
small number of codes.

The identification of robust asso-
ciations with loci implicated in prior
genome-wide association studies demon-
strates convergent validity (27,28). We
demonstrate that this approach more ef-
ficiently detects these known associations
(based on magnitude of p value) than
single-code association. That is, simply
incorporating a single ICD9/PheWAS
code yielded weaker evidence of associ-
ation. These loci and the sensitivity anal-
ysis associated with topic pruning (head
and tail distributions; Table 1, Figure 1)
function as positive controls and illustra-
tions of assay sensitivity.

In nearly all cases, we note that the
strongest associations are identified by
incorporating all codes loading on a
topic, rather than limiting the analysis to
only the most strongly loading. Indeed,
we observe that omitting such strongly
loaded codes does not necessarily reduce
the magnitude of association. Interest-
ingly, there is only one example where a
single code yielded an association nearly
as robust as that observed with the topic,
rheumatoid arthritis-plus, which may
reflect the distinct genetic architecture of
this disorder compared with some others.

In lieu of looking across phenotypes,

a recent report describes a method to
identify disease subtypes based upon
network analysis (29). Our approach is
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Figure 1. Manhattan plots for two example topics: (A) pulmonary disease/cystic fibrosis-plus
and (B) neoplasm-plus.
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not directly comparable, but may also be
valuable in identifying subtypes in the
case where a given diagnosis is geneti-
cally heterogeneous but the presence of
comorbidities helps to define more homo-
geneous groups. A major advantage of the
present approach compared with other
unsupervised methods (eg, deep learning)
is inspectability: it yields a weighted list

of diagnostic codes. This inspectability
enhances biological utility, as it allows post
hoc clarification of the results, as illustrated
by the sensitivity analysis. While we de-
scribe its application for genomics, it may
be useful for other approaches drawing on
coded EHR data where diagnostic codes
do not definitively identify a diagnosis or
subtype. Notably, it should also be possi-
ble to further extend the utility of our ap-
proach by incorporating additional coded
or uncoded data — concepts extracted by
NLP, for example — where such data are
available.

The gain in statistical power afforded
by this approach is apparent. For a ge-
notypic risk ratio of 1.5 with a minor
allele frequency of 25% and a disease
prevalence of 5%, nearly 80,000 cases
are required to achieve 80% power after
Bonferroni correction for 500 PheWAS
phenotypes, versus nearly 800 cases
with 50 topics, if each is analyzed as a
dichotomous outcome. In reality, the
increased case reliability that arises from
integrating across related codes likely
renders these estimates conservative, in
some cases markedly so. Empirically,
our results show that in no case would
a single-code association have yielded
stronger nominal association, indepen-
dent of Bonferroni correction, than the
topic-based association, and in most
cases the association was markedly less.

Still, we note several important lim-
itations. From a modern genomics per-
spective, the present cohorts are likely
insufficient to robustly detect all but
the largest associations. They are, how-
ever, large enough to demonstrate the
feasibility and efficiency of using aggre-
gated groups of diagnoses as an efficient
complement to phenome-wide associa-
tion. Additionally, the biobank cohorts
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studied here are insufficient to examine We note that the topics in many cases they may also illustrate the power of
these associations in non-northern Eu- include codes seemingly unrelated to topic modeling to detect co-occurring
ropean populations; replication in other the predominant diagnosis; while these diagnoses where the physiologic rela-
populations would be informative. may represent type I error or noise, tionship is not otherwise recognized.
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Table 3. Sensitivity analysis examining alternate phenotypes omitting the most- or least-strongly loading diagnoses

Topic # Topic name CHR SNP P value P values in sensitivity analysis
Full topic Topic head Topic tail Single diaynosis
(all diagnoses)  (diagnoses (diagnoses (only fop
loading >0.01) loading <0.05) diagnosis)
19 Pulmonary disease and cystic fibrosis-plus 7 7:117277554 1.049E-42 1.121E-4 7.178E-11 0.02882
19 Pulmonary disease and cystic fibrosis-plus 7 7:116967838 3.005E-32 1.686E-3 4.765E-3 0.0518
09 Anemia and fracture-plus 4 4:12459496 5.985E-29 0.3539 6.102E-51 *
24 Rheumatoid arthritis-plus 6  6:32570417 2.14E-28 2.895E-20 0.2878 7.586E-19
16 Pregnancy complications-plus 5 532198317 2.852E-20 0.1513 6.545E-44 *
19 Pulmonary disease and cystic fibrosis-plus 7 7:117220403 2.055E-19 4.268E-4 1.114E-08 0.05133
22 Uterine neoplasm-plus 14 14:62132727 3.294E-19 0.2401 0.7799 6.231E-3
07 Viral-plus 14 14:57647875 7.58E-19 0.3954 0.3554 *
22 Uterine neoplasm-plus 6 6:148020784 7.105E-18 0.5184 3.387E-3 5.874E-3
24 Rheumatoid arthritis-plus 6  6:32681992 9.832E-18 4.413E-14 0.2 4.409E-11
40 Neoplasm-plus 3 3:1145301 1.962E-17 9.212E-4 3.945E-6 0.01377
22 Uterine neoplasm-plus 2 2:209079758 7.645E-17 0.1993 0.8465 *
01 Adrenal and electrolyte-plus 4 4:41059660 1.813E-16 0.01646 0.1058 *
22 Uterine neoplasm-plus 4 4:84272944 1.993E-16 0.02548 0.8802 *
25 Pituitary and adrenal disease-plus 18 18:25741737 3.269E-16 0.06459 0.078 0.07633
24 Rheumatoid arthritis-plus 6  6:32303848 3.558E-16 5.129E-14 0.118 3.344E-13
07 Viral-plus 8  8:58987251 4.165E-16 0.01557 0.8416 0.09888
*Sparseness of single diagnosis code and low MAF precludes estimate.
Our analysis of topic “heads” and “tails” phenotypes that merit further investiga- 4. Hallberg P, Sjoblom V. (2005) The use of selective

suggests that, in most cases, topics are
not well captured by a single code or
small number of codes. As such, the
names we apply represent a best guess
at interpretation, and investigation of
the mechanism of overlap (in vivo or in
silico) represents an important next step.
In particular, consideration of orthogonal
biological data, such as investigating
pathways or expression quantitative
trait loci, could further clarify the way
in which groups of associated diagnoses
relate to one another mechanistically.

CONCLUSION

In sum, our results indicate the utility
of an approach to large-scale biobank data
that aggregates over groups of diagnostic
codes by treating groups of codes as relat-
ing to underlying topics. This approach is
superior to single-code association for di-
agnoses with shared liability or groups of
diagnostic codes that more reliably iden-
tify an underlying phenotype. It identifies
multiple apparently novel disease loci
while replicating existing associations, and
suggests multiple other regions as well as

tion in biobank cohorts or registries.
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