Skip to main content
Figure 1 | Molecular Medicine

Figure 1

From: Shock Wave Therapy Enhances Angiogenesis through VEGFR2 Activation and Recycling

Figure 1

Activation of VEGFR2-Akt-eNOS signaling pathway by shock wave treatment in HUVECs. (A) Demonstration of shock wave delivery to culture dish. (B) Expressions of cellular apoptosis-related proteins in HUVECs 28 h post-SW treatment assessed by Western blot, including cleavage PARP (c-PARP), cleavage caspase 3 (c-Casp 3) and Bax. Treatment of H2O2 (500 µmol/L) used as positive control. (C) Illustration showed that SW-induced angiogenesis may be achieved through VEGFR2-Akt-eNOS signaling pathway. Phosphorylation of VEGFR2, Akt and eNOS in HUVECs at 30 min and 90 min post-SW treatment compared with those in the control (CON) without SW treatment and with vascular endothelial growth factor A (VEGFA) treatment (50 ng/mL) in serum- and growth factor-free medium being used as positive control. (D) Quantification of VEGFR2 phosphorylation in HUVECs without (that is, CON) or with SW treatment (n = 4 in each group). (E) Representative fluorescent images of DAF-FM diacetate-treated HUVECs post-nitric oxide activation without (CON) or with SW treatment. Comparison of the percentage of fluorescence-positive cells between the two groups (n = 7 in each group). (F) Measurement of carotid artery contraction without (CON) and with SW treatment. Left pane: Potassium chloride (KCl)-induced vessel contraction. Right panel: Phenylephrine (PE)-induced vessel contraction. Data shown as means ± S.D. **P < 0.005 and *P < 0.05 determined by Student t test.

Back to article page