Adamson IY, Bowden DH. The pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Am J Pathol. 1974;77:185–97.
CAS
PubMed
PubMed Central
Google Scholar
Ahern GP. 5-HT and the immune system. Curr Opin Pharmacol. 2011;11:29–33. https://doi.org/10.1016/j.coph.2011.02.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albayrak A, Halici Z, Cadirci E, Polat B, Karakus E, Bayir Y, Unal D, Atasoy M, Dogrul A. Inflammation and peripheral 5-HT7 receptors: the role of 5-HT7 receptors in carrageenan induced inflammation in rats. Eur J Pharmacol. 2013;715:270–9. https://doi.org/10.1016/j.ejphar.2013.05.010.
Article
CAS
PubMed
Google Scholar
Ayaz G, Halici Z, Albayrak A, Karakus E, Cadirci E. Evaluation of 5-HT7 receptor trafficking on in Vivo and in vitro model of lipopolysaccharide (LPS)-induced inflammatory cell injury in rats and LPS-treated A549 cells. Biochem Genet. 2017;55:34–47. https://doi.org/10.1007/s10528-016-9769-2.
Article
CAS
PubMed
Google Scholar
Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci. 2013;4:48–63. https://doi.org/10.1021/cn300186b.
Article
CAS
PubMed
Google Scholar
Baker LP, Nielsen MD, Impey S, Metcalf MA, Poser SW, Chan G, Obrietan K, Hamblin MW, Storm DR. Stimulation of type 1 and type 8 Ca 2+ /Calmodulin-sensitive adenylyl Cyclases by the G s -coupled 5-Hydroxytryptamine subtype 5-HT 7A receptor. J Biol Chem. 1998;273:17469–76. https://doi.org/10.1074/jbc.273.28.17469.
Article
CAS
PubMed
Google Scholar
Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL. Cloning of a novel human serotonin receptor (5-HT7) positively linked to Adenylate Cyclase. J Biochem Chem. 1993;268:23422–6.
CAS
Google Scholar
Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005;4:854–65. https://doi.org/10.1038/nrd1854.
Article
CAS
PubMed
Google Scholar
Cadirci E, Halici Z, Bayir Y, Albayrak A, Karakus E, Polat B, Unal D, Atamanalp SS, Aksak S, Gundogdu C. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats. Immunobiology. 2013;218:1271–83. https://doi.org/10.1016/j.imbio.2013.04.012.
Article
CAS
PubMed
Google Scholar
Cedeño N, Urbina M, Obregón F, Lima L. Characterization of serotonin transporter in blood lymphocytes of rats. Modulation by in vivo administration of mitogens. J Neuroimmunol. 2005;159:31–40. https://doi.org/10.1016/j.jneuroim.2004.09.010.
Article
CAS
PubMed
Google Scholar
Chang Chien CC, Hsin LW, Su MJ. Activation of serotonin 5-HT7 receptor induces coronary flow increase in isolated rat heart. Eur J Pharmacol. 2015;748:68–75. https://doi.org/10.1016/j.ejphar.2014.08.027.
Article
CAS
PubMed
Google Scholar
Chapin EM, Andrade R. A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. II. Involvement of the hyperpolarization-activated current I(h). J Pharmacol Exp Ther. 2001;297:403–9.
CAS
PubMed
Google Scholar
de las Casas-Engel M, Domínguez-Soto A, Sierra-Filardi E, Bragado R, Nieto C, Puig-Kroger A, Samaniego R, Loza M, Corcuera MT, Gómez-Aguado F, Bustos M, Sánchez-Mateos P, Corbí AL. Serotonin skews human macrophage polarization through HTR 2B and HTR 7. J Immunol. 2013;190:2301–10. https://doi.org/10.4049/jimmunol.1201133.
Article
CAS
Google Scholar
Dogrul A, Seyrek M. Systemic morphine produce antinociception mediated by spinal 5-HT 7 , but not 5-HT 1A and 5-HT 2 receptors in the spinal cord. Br J Pharmacol. 2006;149:498–505. https://doi.org/10.1038/sj.bjp.0706854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domínguez-Soto Á, Usategui A, Las Casas-Engel MD, Simón-Fuentes M, Nieto C, Cuevas VD, Vega MA, Luis Pablos J, Corbí ÁL. Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis. Sci Rep. 2017;7:1–15. https://doi.org/10.1038/s41598-017-15348-y.
Article
CAS
Google Scholar
Errico M, Crozier RA, Plummer MR, Cowen DS. 5-HT7 receptors activate the mitogen activated protein kinase extracellular signal related kinase in cultured rat hippocampal neurons. Neuroscience. 2001;102:361–7. https://doi.org/10.1016/S0306-4522(00)00460-7.
Article
CAS
PubMed
Google Scholar
Gill CH, Soffin EM, Hagan JJ, Davies CH. 5-HT7 receptors modulate synchronized network activity in rat hippocampus. Neuropharmacology. 2002;42:82–92. https://doi.org/10.1016/S0028-3908(01)00149-6.
Article
CAS
PubMed
Google Scholar
Guseva D, Holst K, Kaune B, Meier M, Keubler L, Glage S, Buettner M, Bleich A, Pabst O, Bachmann O, Ponimaskin EG. Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm Bowel Dis. 2014a;20:1516–29. https://doi.org/10.1097/MIB.0000000000000150.
Article
PubMed
Google Scholar
Guseva D, Wirth A, Ponimaskin E. Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front Behav Neurosci. 2014b;8:1–8. https://doi.org/10.3389/fnbeh.2014.00306.
Article
CAS
Google Scholar
Hashemi-Firouzi N, Komaki A, Soleimani Asl S, Shahidi S. The effects of the 5-HT7 receptor on hippocampal long-term potentiation and apoptosis in a rat model of Alzheimer’s disease. Brain Res Bull. 2017;135:85–91. https://doi.org/10.1016/j.brainresbull.2017.10.004.
Article
CAS
PubMed
Google Scholar
Hedlund P, Sutcliffe J. Functional, molecular and pharmacological advances in 5-HT receptor research. Trends Pharmacol Sci. 2004;25:481–6. https://doi.org/10.1016/j.tips.2004.07.002.
Article
CAS
PubMed
Google Scholar
Herr N, Bode C, Duerschmied D. The effects of serotonin in immune cells. Front Cardiovasc Med. 2017;4:1–11. https://doi.org/10.3389/fcvm.2017.00048.
Article
CAS
Google Scholar
Holmes C, Butchart J. Systemic inflammation and Alzheimer's disease. Biochem Soc Trans. 2011;39:898–901. https://doi.org/10.1042/BST0390898.
Article
CAS
PubMed
Google Scholar
Holst K, Guseva D, Schindler S, Sixt M, Braun A, Chopra H, Pabst O, Ponimaskin E. The serotonin receptor 5-HT7R regulates the morphology and migratory properties of dendritic cells. J Cell Sci. 2015;128:2866–80. https://doi.org/10.1242/jcs.167999.
Article
CAS
PubMed
Google Scholar
Horisawa T, Ishiyama T, Ono M, Ishibashi T, Taiji M. Binding of lurasidone, a novel antipsychotic, to rat 5-HT7 receptor: analysis by [3H]SB-269970 autoradiography. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;40:132–7. https://doi.org/10.1016/j.pnpbp.2012.08.005.
Article
CAS
Google Scholar
Iceta R, Mesonero JE, Aramayona JJ, Alcalde AI. Expression of 5-HT1A and 5-HT7 receptors in caco-2 cells and their role in the regulation of serotonin transporter activity. J Physiol Pharmacol. 2009;60:157–64.
CAS
PubMed
Google Scholar
Idzko M, Panther E, Stratz C, Müller T, Bayer H, Zissel G, Dürk T, Sorichter S, Di Virgilio F, Geissler M, Fiebich B, Herouy Y, Elsner P, Norgauer J, Ferrari D. The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol. 2004;172:6011–9. https://doi.org/10.4049/jimmunol.172.10.6011.
Article
CAS
PubMed
Google Scholar
Jähnichen S, Glusa E, Pertz HH. Evidence for 5-HT2B and 5-HT7 receptor-mediated relaxation in pulmonary arteries of weaned pigs. Naunyn Schmiedeberg's Arch Pharmacol. 2005;371:89–98. https://doi.org/10.1007/s00210-004-1006-6.
Article
CAS
Google Scholar
Jasper JR, Kosaka A, Z.P. To, Chang DJ, Eglen RM. Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT 7 receptor (h5-HT 7(b) ). Br J Pharmacol. 1997;122:126–32. https://doi.org/10.1038/sj.bjp.0701336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson-Farley NN, Kertesy SB, Dubyak GR, Cowen DS. Enhanced activation of Akt and extracellular-regulated kinase pathways by simultaneous occupancy of Gq-coupled 5-HT2A receptors and Gs-coupled 5-HT7A receptors in PC12 cells. J Neurochem. 2005;92:72–82. https://doi.org/10.1111/j.1471-4159.2004.02832.x.
Article
CAS
PubMed
Google Scholar
Kim JJ, Bridle BW, Ghia J-E, Wang H, Syed SN, Manocha MM, Rengasamy P, Shajib MS, Wan Y, Hedlund PB, Khan WI. Targeted Inhibition of Serotonin Type 7 (5-HT 7 ) Receptor Function Modulates Immune Responses and Reduces the Severity of Intestinal Inflammation. J Immunol. 2013;190:4795–804. https://doi.org/10.4049/jimmunol.1201887.
Article
CAS
PubMed
Google Scholar
Krabbe G, Matyash V, Pannasch U, Mamer L, Boddeke HWGM, Kettenmann H. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity. Brain Behav Immun. 2012;26:419–28. https://doi.org/10.1016/j.bbi.2011.12.002.
Article
CAS
PubMed
Google Scholar
Kvachnina E. 5-HT7 receptor is coupled to G subunits of Heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. J Neurosci. 2005;25:7821–30. https://doi.org/10.1523/JNEUROSCI.1790-05.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
León-Ponte M, Ahern GP, O’Connell PJ. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood. 2007;109:3139–46. https://doi.org/10.1182/blood-2006-10-052787.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42. https://doi.org/10.1038/nri.2017.125.
Article
CAS
PubMed
Google Scholar
Liu H, Irving HR, Coupar IM. Expression patterns of 5-HT7 receptor isoforms in the rat digestive tract. Life Sci. 2001;69:2467–75. https://doi.org/10.1016/S0024-3205(01)01318-2.
Article
CAS
PubMed
Google Scholar
Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliffe JG, Erlander MG. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron. 1993;11:449–58. https://doi.org/10.1016/0896-6273(93)90149-L.
Article
CAS
PubMed
Google Scholar
Mahé C, Loetscher E, Dev KK, Bobirnac I, Otten U, Schoeffter P. Serotonin 5-HT7 receptors coupled to induction of interleukin-6 in human microglial MC-3 cells. Neuropharmacology. 2005;49:40–7. https://doi.org/10.1016/j.neuropharm.2005.01.025.
Article
CAS
PubMed
Google Scholar
Müller T, Dürk T, Blumenthal B, Grimm M, Cicko S, Panther E, Sorichter S, Herouy Y, Di Virgilio F, Ferrari D, Norgauer J, Idzko M. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One. 2009;4:1–8. https://doi.org/10.1371/journal.pone.0006453.
Article
CAS
Google Scholar
Nilsson T, Longmore J, Shaw D, Pantev E, Bard JA, Branchek T, Edvinsson L. Characterisation of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur J Pharmacol. 1999;372:49–56. https://doi.org/10.1016/S0014-2999(99)00114-4.
Article
CAS
PubMed
Google Scholar
Peroutka SJ, Snyder SH. Two distinct serotonin receptors: regional variations in receptor binding in mammalian brain. Brain Res. 1981;208:339–47. https://doi.org/10.1016/0006-8993(81)90562-X.
Article
CAS
PubMed
Google Scholar
Polat B, Halici Z, Cadirci E, Karakus E, Bayir Y, Albayrak A, Unal D. Liver 5-HT7 receptors: a novel regulator target of fibrosis and inflammation-induced chronic liver injury in vivo and in vitro. Int Immunopharmacol. 2017;43:227–35. https://doi.org/10.1016/j.intimp.2016.12.023.
Article
CAS
PubMed
Google Scholar
Querfurth HW, Laferla FM. Alzheimer’s disease; 2018. p. 329–44.
Google Scholar
Quintero-Villegas A, Álvarez-Manzo HS, Bernal-Mondragón C, Guevara-Guzmám R, Valenzuela-Almada MOA. SciFed journal of Alzheimer’s and dementia. SF J Alzh Dement. 2018;1:1–10.
Google Scholar
Rapalli A, Bertoni S, Arcaro V, Saccani F, Grandi A, Vivo V, Cantoni AM, Barocelli E. Dual role of endogenous serotonin in 2,4,6-Trinitrobenzene sulfonic acid-induced colitis. Front Pharmacol. 2016;7. https://doi.org/10.3389/fphar.2016.00068.
Rapport MM, Green AA, Page IH. Partial purification of the vasoconstrictor in beef serum. J Biol Chem. 1948;174:735–41.
CAS
PubMed
Google Scholar
Renner U, Zeug A, Woehler A, Niebert M, Dityatev A, Dityateva G, Gorinski N, Guseva D, Abdel-Galil D, Fröhlich M, Döring F, Wischmeyer E, Richter DW, Neher E, Ponimaskin EG. Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J Cell Science. 2012;125:2486-99. https://doi.org/10.1242/jcs.101337.
Article
CAS
PubMed
Google Scholar
Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang JM, Schwartz JC. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci U S A. 1993;90:8547–51. https://doi.org/10.1073/pnas.90.18.8547.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruddell RG, Oakley F, Hussain Z, Yeung I, Bryan-Lluka LJ, Ramm GA, Mann DA. A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am J Pathol. 2006;169:861–76. https://doi.org/10.2353/ajpath.2006.050767.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russo A, Pellitteri R, Monaco S, Romeo R, Stanzani S. “In vitro” postnatal expression of 5-HT7 receptors in the rat hypothalamus: an immunohistochemical analysis. Dev Brain Res. 2005;154:211–6. https://doi.org/10.1016/j.devbrainres.2004.11.002.
Article
CAS
Google Scholar
Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23:1018–27. https://doi.org/10.1038/nm.4397.
Article
CAS
PubMed
Google Scholar
Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci. 2015;9:1–20. https://doi.org/10.3389/fncel.2015.00028.
Article
CAS
Google Scholar
Shen Y, Monsma FJ, Metcalf MA, Jose PA, Hamblin MW, Sibley DR. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem. 1993;268:18200–4.
CAS
PubMed
Google Scholar
Soga F, Katoh N, Inoue T, Kishimoto S. Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol. 2007;127:1947–55. https://doi.org/10.1038/sj.jid.5700824.
Article
CAS
PubMed
Google Scholar
Speranza L, Chambery A, Di Domenico M, Crispino M, Severino V, Volpicelli F, Leopoldo M, Bellenchi GC, di Porzio U, Perrone-Capano C. The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways. Neuropharmacology. 2013;67:155–67. https://doi.org/10.1016/j.neuropharm.2012.10.026.
Article
CAS
PubMed
Google Scholar
Stefulj J, Jernej B, Cicin-Sain L, Rinner I, Schauenstein K. mRNA expression of serotonin receptors in cells of the immune tissues of the rat. Brain Behav Immun. 2000;14:219–24. https://doi.org/10.1006/brbi.1999.0579.
Article
CAS
PubMed
Google Scholar
Strasser B, Gostner JM, Fuchs D. Mood, food, and cognition: role of tryptophan and serotonin. Curr Opin Clin Nutr Metab Care. 2016;19:55–61. https://doi.org/10.1097/MCO.0000000000000237.
Article
CAS
PubMed
Google Scholar
Svejda B, Kidd M, Timberlake A, Harry K, Kazberouk A, Schimmack S, Lawrence B, Pfragner R, Modlin IM. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors. Cancer Sci. 2013;104:844–55. https://doi.org/10.1111/cas.12174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tawfik MK, Makary S. 5-HT7 receptor antagonism (SB-269970) attenuates bleomycin-induced pulmonary fibrosis in rats via downregulating oxidative burden and inflammatory cascades and ameliorating collagen deposition: comparison to terguride. Eur J Pharmacol. 2017;814:114–23. https://doi.org/10.1016/j.ejphar.2017.08.014.
Article
CAS
PubMed
Google Scholar
Terrón JA, Falcón-Neri A. Pharmacological evidence for the 5-HT7 receptor mediating smooth muscle relaxation in canine cerebral arteries. Br J Pharmacol. 1999;127:609–16. https://doi.org/10.1038/sj.bjp.0702580.
Article
PubMed
PubMed Central
Google Scholar
Thomas D, Hagan J. 5-HT7 Receptors. Curr Drug Target -CNS Neurol Disord. 2004;3:81–90. https://doi.org/10.2174/1568007043482633.
Article
CAS
Google Scholar
Tokarski K, Zahorodna A, Bobula B, Hess G. 5-HT7 receptors increase the excitability of rat hippocampal CA1 pyramidal neurons. Brain Res. 2003;993:230–4. https://doi.org/10.1016/j.brainres.2003.09.015.
Article
CAS
PubMed
Google Scholar
Urbina M, Arroyo R, Lima L. 5-HT7 receptors and tryptophan hydroxylase in Lymphoctytes of rats: mitogen activation, physical restraint or treatment with reserpine. Neuroimmunomodulation. 2014;21:240–9. https://doi.org/10.1159/000357148.
Article
CAS
PubMed
Google Scholar
Valdés-Ferrer SI. The challenges of long-term sepsis survivors: when surviving is just the beginning. Rev Investig Clin. 2014;66:439–49.
Google Scholar
Valdés-Ferrer SI, Rosas-Ballina M, Olofsson PS, Lu B, Dancho ME, Ochani M, Li JH, Scheinerman JA, Katz DA, Levine YA, Hudson LK, Yang H, Pavlov VA, Roth J, Blanc L, Antoine DJ, Chavan SS, Andersson U, Diamond B, Tracey KJ. HMGB1 mediates splenomegaly and expansion of splenic CD11b+ Ly-6Chigh inflammatory monocytes in murine sepsis survivors. J Intern Med. 2013;274. https://doi.org/10.1111/joim.12104.
Article
PubMed
PubMed Central
Google Scholar
Vanhoenacker P, Haegeman G, Leysen JE. 5-HT 7 receptors: current knowledge and future prospects. Trends Pharmacol Sci. 2000;21:70–7. https://doi.org/10.1016/S0165-6147(99)01432-7.
Article
CAS
PubMed
Google Scholar
Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–43. https://doi.org/10.1146/annurev-physiol-022516-034406.
Article
CAS
PubMed
Google Scholar
Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol Res. 2019;140:100–14. https://doi.org/10.1016/j.phrs.2018.06.015.
Article
CAS
PubMed
Google Scholar
Yaakob NS, Chinkwo KA, Chetty N, Coupar IM, Irving HR. Distribution of 5-HT 3 , 5-HT 4 , and 5-HT 7 Receptors Along the Human Colon. J Neurogastroenterol Motil. 2015;21:361–9. https://doi.org/10.5056/jnm14157.
Article
PubMed
PubMed Central
Google Scholar
Zhou X, Zhang R, Zhang S, Wu J, Sun X. Activation of 5-HT1A receptors promotes retinal ganglion cell function by inhibiting the cAMP-PKA pathway to modulate presynaptic GABA release in chronic glaucoma. J Neurosci. 2019;39:1484–504. https://doi.org/10.1523/JNEUROSCI.1685-18.2018.
Article
CAS
PubMed
PubMed Central
Google Scholar