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Septic cardiomyopathy is a well-described complication of severe sepsis and septic shock. However, the interplay of its
underlying mechanisms remains enigmatic. Consequently, we constantly add to our pathophysiological understanding of septic
cardiomyopathy. Various cardiosuppressive mediators have been discovered, as have mulfiple molecular mechanisms (alter-
ations of myocardial calcium homeostasis, mitochondrial dysfunction, and myocardial apoptosis) that may be involved in myo-
cardial dysfunction during sepsis. Finally, the detrimental roles of nitric oxide and peroxynitrite have been unraveled. Here, we de-
scribe our present understanding of systemic, supracellular, and cellular molecular mechanisms involved in sepsis-induced

myocardial suppression.
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INTRODUCTION

Early pioneering reports sought to dis-
tinguish between two distinct clinical
profiles of septic shock and associated
“warm shock” with warm, dry skin, a
pounding pulse despite hypotension,
and high cardiac output. This was ob-
served in the initial phase of hospitaliza-
tion due to septic shock. In contrast,
“cold shock” seemed to be related to low
cardiac output and was correlated with
the later clinical stages of septic shock
before patients succumbed to sepsis
(1-3). Based on these findings, it was
concluded that patients during septic
shock initially encountered an early hy-
perdynamic phase from which they ei-
ther recovered or declined into a hypo-
dynamic phase associated with
myocardial depression, heart failure, and
death (4). This principle was initially
supported by experimental models, dem-
onstrating that septic shock associated
with reduced cardiac output and ele-
vated systemic vascular resistance led to

the death of animals (5,6). However,
these concepts were substantially chal-
lenged when Wilson et al. (7) linked sep-
tic shock in humans with normal, or
even elevated, cardiac output (and very
rarely with low cardiac output) and de-
creased systemic vascular resistance in
adequately resuscitated septic patients.
Subsequent studies using pulmonary ar-
tery catheters confirmed that sufficient
fluid resuscitation in septic shock pa-
tients manifested a hyperdynamic circu-
latory state with high cardiac output, de-
creased systemic vascular resistance,
normal stroke volume, and high heart
rate (8-11)—even in nonsurvivors (12).
Therefore, it was concluded that the ini-
tial depiction of cold shock-associated
decreased cardiac output was likely re-
lated to hypovolemia due to inadequate
volume loading of septic shock patients,
rather than being involved in mecha-
nisms leading to lethality.

First evidence for myocardial sup-
pression in patients with septic shock
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was published in 1984 (13). All observed
patients presented with high cardiac
output maintained their stroke volume
index, and displayed decreased sys-
temic vascular resistance. It was further
reported that 75% of patients exhibited
decreased left ventricular ejection frac-
tion after the onset of septic shock over
a two-day period. However, one of the
most striking findings in the study was
that depression of the left ventricular
ejection fraction, as well as the observed
acute left ventricular dilatation, were re-
versible and returned to normal levels
after 7 to 10 days in surviving patients
(13). This was later confirmed in further
patient studies and experimental set-
tings (14-17). In more recent studies,
predominantly using echocardiography,
cardiac dysfunction during sepsis and
septic shock has been confirmed
(18-21). To date, it is now generally ac-
cepted that, after adequate volume re-
suscitation, patients develop a hyperdy-
namic circulatory state associated with
high cardiac output, decreased systemic
vascular resistance, and biventricular
dilatation. Here, we describe supracellu-
lar, systemic, and various molecular
mechanisms that might be involved in
septic cardiomyopathy, such as circulat-
ing cardiosuppressing mediators, alter-
ations of calcium flux in cardiomyocytes,
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involvement of nitric oxide and perox-
ynitrite, as well as mitochondrial dys-
function and apoptosis.

SYSTEMIC, SUPRACELLULAR
MECHANISMS

Decreased Coronary Blood Flow

One of the first suggestions was that
reduced coronary perfusion in the sep-
tic heart might be responsible for a set-
ting of global cardiac ischemia. This hy-
pothesis was soon abandoned after
direct measurements of coronary blood
flow were obtained, showing no re-
duced, but rather increased, coronary
blood flow (22,23). In later studies,
however, increased levels of plasma tro-
ponin were observed and correlated
with the severity of myocardial depres-
sion during sepsis and septic shock
(24). Myocardial necrosis could not be
observed in patients who died from
septic shock (3,25), however, raising the
question whether increases in troponin
were due to cytokine-induced, transient
increases in cardiomyocyte membrane
permeability to troponin. To date, this
remains to be determined.

Alterations of Microvasculature

There is now increasing evidence that
sepsis and septic shock leads to changes
of the myocardial microvasculature. In a
canine model of endotoxemia, maldistri-
bution of heterogeneous coronary blood
flow has been reported (26). These find-
ings might be caused by endothelial
swelling and nonocclusive intravascular
fibrin deposits in the microvasculature
(27). In parallel, activated cardiomy-
ocytes from septic mice promoted trans-
endothelial migration and activation of
circulating neutrophils into the intersti-
tium (28) where these cells may aug-
ment the sepsis-induced intracardial
inflammation, and contribute to an in-
creased vascular leakage, which has
been described to also impair cardiac
function and compliance secondary to
myocardial edema (29,30). Yet, studies
have failed to confirm cellular hypoxia
in a murine sepsis model (31).

Presumed Signaling in Cardiomyocytes
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Figure 1. Flowchart of the presumed infracellular signaling in cardiomyocytes leadiny to
myocardial production of cardiodepressant mediators.

Cardiosuppressing Circulating
Proinflammatory Mediators

Another hypothesis suggested circu-
lating myocardium-depressing factors
as the cause of septic cardiomyopathy
(32). Parrillo et al. (33) confirmed the ex-
istence of a cardiodepressant substance
by incubating isolated rat cardiomy-
ocytes with serum obtained from septic
shock patients, leading to decreased
amplitude and velocity of cardiomy-
ocyte shortening. Levels of cytokines,
such as tumor necrosis factor (TNF)-a,
interleukin (IL)-1p, and the complement
anaphylatoxin, C5a, are known to be el-
evated in the circulation during sepsis
and have been found to directly depress
myocardial contractility in vitro (34-36).
It is noteworthy that cardiomyocytes
are able to generate TNF-a, IL-1f, IL-6,
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cytokine-induced neutrophil chemoat-
tractant (CINC)-1, macrophage migration
inhibitory factor (MIF), and high-mobil-
ity group box (HMGB)-1 during endo-
toxemia, sepsis, and burn injury (37-39).
This is a seemingly paradoxical phenom-
enon because such cardiomyocyte prod-
ucts would impair cardiomyocyte per-
formance (Figure 1). Our understanding
of this negative feedback loop to date re-
mains elusive, but in many respects it is
analogous to products of the inflamma-
tory response that are tissue-damaging
as opposed to products that are tissue-
protective (40). During sepsis the com-
plement anaphylatoxin C5a has been
described to be involved in immuno-
paralysis (41), multiple organ failure (42),
thymocyte apoptosis (43), and imbalance
of the coagulation system (44). Recently,



Cba has also been found to play a major
role in septic cardiomyopathy (36). Fol-
lowing experimental sepsis, reductions
in left ventricular pressures occurred in
vivo and in cardiomyocyte contractility in
vitro, both of which could be reversed by
in vivo administration of a blocking anti-
body to Cba (Figure 2). in vitro addition
of recombinant rat C5a induced dramatic
contractile dysfunction in both sham and
septic cardiomyocytes, suggesting that
excessive in vivo generation of C5a dur-
ing sepsis causes dysfunction of car-
diomyocytes (36).

Despite all these findings, isolated rab-
bit papillary muscles or rat cardiomy-
ocytes harvested during the acute phase
of sepsis and ex vivo studies show a per-
sistent decrease in contractility in spite of
the absence of direct contact with septic
plasma (36,45,46). This raises questions
as to whether cardiodepressant factors in
serum represent an exclusive pathophys-
iological mechanism of sepsis-associated
cardiomyopathy.

Metabolic Changes

Various profound metabolic changes
have been described in the cardiomy-
ocyte during sepsis and septic shock. Pa-
tients in severe sepsis and septic shock
display a 30% increase of oxygen con-
sumption and baseline metabolism com-
pared with normal basal values, but both
are markedly reduced compared with
“uncomplicated” sepsis (47). Once organ
dysfunction develops, however, oxygen
consumption and resting metabolic rate
decrease, suggesting that, during multi-
ple organ failure, patients seem to toler-
ate lower values of oxygen supply (48).
Moreover, prolonged sepsis has been
found to be associated with progressive
increase in tissue oxygen tension paral-
leling the severity of illness (49,50). It has
therefore been speculated whether, dur-
ing severe sepsis, cells utilize less oxy-
gen, rather than suffering from a defec-
tive oxygen delivery to tissues. Whereas
sepsis is generally associated with in-
creased blood levels of lactate, septic
human hearts exhibited a net lactate ex-
traction between arterial and coronary
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Figure 2. Myocardial contractile dysfunction sepsis might, in part, be triggyered by Cba.
Question marks illustrate open, to date unanswered, questions.

sinus blood (22). In a recent human au-
topsy study of patients who had suc-
cumbed to severe sepsis, buildup of
lipids was found inside cardiomyocytes
(51). During sepsis, human cardiomy-
ocytes have also displayed diminished
uptake of ketone bodies, free fatty acids,
and glucose (23). In parallel, septic mice
presented with increased intracardiomy-
ocyte deposits of glycogen (52).

Autonomic Dysfunction

Septic shock has been found to be as-
sociated with neuronal and glial apopto-
sis within cardiovascular autonomic cen-
ters (53,54), raising the question whether
failure of cardiac modulation by the au-
tonomic nervous system might con-
tribute to septic cardiomyopathy. Other
reports linked high levels of circulating
catecholamines with the onset of septic
shock but found impaired sympathetic
modulation on heart and vessels, sug-
gesting that central autonomic regulatory
impairment contributes to circulatory
failure (55). Moreover, impaired function
of the autonomic nervous system is asso-
ciated with an increased risk for death
from critical illness (56). Thus, innovative
pathophysiologic concepts targeting au-
tonomic dysfunction in life-threatening

disease emerge as a new clinical and sci-
entific challenge (57-60).

CELLULAR MOLECULAR MECHANISMS

In addition to the circulating cardio-
depressing factor theory, a second con-
cept was developed, focusing on intrin-
sic alterations in the myocardium as a
predominant mechanism of septic car-
diomyopathy (see below). It remains to
be determined if and to what extent cy-
tokines, chemokines, and Cba partici-
pate in the initiation of these intracellu-
lar events, which would link the two
hypotheses.

Calcium Flux and
Cardiomyofilaments

There is now increasing evidence that
sepsis induces significant alterations in
the myocardial calcium homeostasis in
two ways. First, abnormalities in the my-
ocardial calcium current have been de-
scribed in endotoxemic guinea pigs (61),
as well as in cultured rodent cardiomy-
ocytes exposed to the cardiodepressive
IL-1p (62). In line with these findings,
myocardial L-type calcium channels
have been found to be decreased during
endotoxemia (63). Second, a reduction in
myofilament calcium sensitivity has been
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Figure 3. Physioloyic regulation of calcium flux in cardiomyocytes.

reported in endotoxemic rabbits (64,65).
The exact mechanisms of these observa-
tions are only partially understood, but
the decreased response of myofilaments
to calcium may be involved in the im-
paired myocardial contractility and de-
pression of systolic function in septic
patients. Indeed, reduced calcium sensi-
tivity of myofilaments seems to be asso-
ciated with increased cardiomyocyte
length and increased ventricular distensi-
bility (66). Recently, scattered foci of dis-
ruptions in the actin-myosin contractile
apparatus were described in septic
human hearts (51). Moreover, myocardial
Ca” transport across membranes of the
sarcoplasmic reticulum (SR) plays a cen-
tral role in cardiac contraction-relaxation
sequence (Figure 3). The density of the
calcium release-triggering ryanodine re-
ceptor is decreased on the SR during ex-
perimental sepsis, associated with subse-
quent impairment of Ca”" release from
the sarcoplasmic reticulum (67). Tran-
sient increases of intracellular Ca*" acti-
vate myofilament proteins to cause myo-
cardial contraction. The sarcoplasmic
reticulum Ca**-ATPase (SERCA?2) subse-
quently translocates cytoplasmatic Ca**
back into the SR, a process that is tightly

controlled by a closely associated SR
membrane protein, phospholamban
(PLB) (68). Dephosphorylated PLB acti-
vates and enhances SERCA2 activity,
whereas phosphorylation of PLB greatly
diminishes SERCA2 functionality and
myocardial relaxation (68,69). Thus, PLB
and SERCA?2 interactions play a primary
role in regulating cardiac contractility
and relaxation. Calcium uptake by sar-
coplasmic reticulum has been shown to
be impaired during the hypodynamic
phase of sepsis in the rat heart (70). The
resulting decrease in myocardial contrac-
tility during the hypodynamic phase
might also, in part, be induced by a de-
crease in phospholamban phosphoryla-
tion, which leads to decreased Ca* trans-
port across the SR (71). In sharp contrast,
during the early hyperdynamic phase of
sepsis, the interaction between phospho-
lamban phosphorylation and Ca** trans-
port across the SR seems to be largely
disrupted, represented by an increase in
phospholamban phosphorylation (71).

Toll-like Receptors and CD14

Toll-like receptors (TLRs) have been
identified as primary receptors of in-
nate immunity that distinguish between
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different patterns of pathogens and
evoke a rapid innate immune response
(72). To date, nine TLRs have been iden-
tified and characterized (72). Various
studies have identified the expression of
human TLRs, including TLR2, TLR4,
and TLR6 in the heart (73-75). The im-
portance of myocardial TLR signaling
was established when TLR4 or IRAK1
(IL-1 receptor-associated kinase 1; a
downstream signaling component of
TLR4) deficient mice were found to be
protected from LPS-induced cardiac dys-
function, as determined by echocardio-
gram (76,77). When mice were subjected
to LPS challenge, the rapid and robust
induction of NF-«B, subsequent increase
of TNF and IL-18 mRNA, and protein
expression in cardiomyocytes were sig-
nificantly ameliorated and delayed in
TLR4-mutant mice (78). These findings
indicate that TLR4 signaling is responsi-
ble, at least in part, for the induction of
myocardial proinflammatory mediators
during endotoxemia.

CD14 is a 55-kD glycosylphosphati-
dylinositin-anchored receptor that binds
LPS with affinity and is critically in-
volved in mediating LPS responses (79).
Subsequently, CD14-deficient mice were
shown to be protected against LPS-in-
duced septic shock (80). Cardiomyocytes
from CD14-deficient mice exhibited de-
creased activation of NF-kB, blunted con-
sequent downstream expression of myo-
cardial mRNA, and protein levels of TNF
and IL-1p during endotoxemia (81).
Moreover, endotoxemic CD14™/~ mice
maintained normal cardiac function,
whereas wild-type littermates displayed
decreased left ventricular shortening and
diminished velocity of circumferential
shortening and left ventricular pres-
sure/time (dP/dt__ ) (81). Because CD14
lacks a transmembrane domain, how-
ever, the exact mechanism by which LPS
binding to CD14 induces cell activation
remains to be determined.

p-Adrenergic Receptors
Catecholamines are known to increase

cardiac contractility and heart rate via in-

teraction with f-adrenoceptors expressed



on the myocardium. However, if these
receptors are excessively stimulated or
engaged over an extended period of
time, myocardial damage by calcium
overload and subsequent cell necrosis
have been reported (82). Septic patients
are known to be exhibit increased levels
of catecholamines (55,83,84). These find-
ings have been confirmed in various ani-
mal studies (85,86). In a murine model of
sepsis, decreased density of -adrenocep-
tors on the myocardium was reported
(87,88). However, other reports linked
the myocardial contractile dysfunction to
cytokine stimulation, as f-adrenoceptor
density was found to be normal (89). Im-
portantly, there seems to be significant
disruption of the myocardial signal
transduction following B-adrenoceptor
stimulation. Endotoxemic rabbits dis-
played decreased levels of stimulatory
G-proteins (90), and septic rats exhib-
ited increased expression of inhibitory
G-protein (91), which was also reported
in the myocardium of human nonsur-
vivors of septic shock (92). These events
are likely to decrease the activity of the
adenylyl cyclase, resulting in decreased
intracellular levels of cyclic adenosine
monophosphate (c(AMP), paralyzing the
cardiomyocyte. Thus, it remains to be de-
termined whether a blunted p-adreno-
ceptor stimulation, disruption of the sig-
naling cascades further downstream, or a
combination of both are involved in sep-
tic cardiomyopathy.

MAPK Signaling Cascades

Many extracellular stimuli recognized
by mammalian cells engage a highly
complex intracellular signaling network,
at the center of which are involved the
mitogen-activated protein kinases
(MAPKs). The most extensively studied
members of the MAPKs are extracellular
signal-regulated kinase 1/2 (ERK1/2),
p38 MAPK, and c-Jun N-terminal kinase
(JNK) (93). In cardiomyocytes, MAPK ac-
tivation has been linked to a wide array
of cellular events, including apoptosis
(94,95), ischemia/reperfusion injury (96),
and ischemic heart failure (97). It re-
mains to be determined if myocardial

MAPK activation also occurs during sep-
sis (Figure 1), and if MAPKSs are also en-
gaged in other myocardial defects like
disturbance of sarcoplasmic calcium flux,
etc. (see above).

Matrix Metalloproteinases

Matrix metalloproteinases (MMPs)
comprise a large family of zinc-
dependent endopeptidases that have
been recognized for their ability to de-
grade components of the extracellular
matrix. Increased MMP activity has been
associated with a wide variety of cardio-
vascular pathologies, including acute
and chronic heart failure and atheroscle-
rosis (98-101). MMP-2 activation and re-
lease has been found to mediate acute
cardiac failure following ischemia-
reperfusion injury through cleavage of
troponin I (102,103). Recent studies have
also demonstrated an important role for
MMPs during septic cardiomyopathy.
Endotoxemic rats were found to have
significantly depressed cardiac function,
loss of ventricular 72-kD MMP-2, and re-
lease of MMP-9 (104). MMP inhibitors
significantly preserved cardiac function
during LPS-induced septic shock and re-
versed these observations (104). In an
ovine sepsis study, cardiac MMP-2 and
MMP-9 activity positively correlated
with heart rate and negatively correlated
with left ventricular stroke work index,
and increased MMP-2 and MMP-9 activi-
ties were positively correlated with car-
diomyocyte apoptosis (105).

Nitric Oxide and Peroxynitrite
Excessive production of nitric oxide
(NO) is an important player during hy-
potension and catecholamine resistance
in septic shock (106). However, its role
and impact on septic cardiomyopathy is
still a matter of debate. Whereas dispro-
portionate levels of NO sustain the abil-
ity of the left ventricle to fill during dias-
tole, and thereby crucially support
adequate myocardial perfusion (107,108),
cardiodepressant activity of proinflam-
matory cytokines also seems to involve
NO synthase (NOS): exposure of rat car-
diomyocytes to septic sera depressed
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contractility (see below), but NOS inhibi-
tion restored contractility to control
levels (109). Moreover, intracoronary in-
fusion of the NO donor sodium nitro-
prusside impaired systolic pressure de-
velopment despite improved diastolic
relaxation and distensibility (110). Fi-
nally, deficiency or selective blockade of
inducible NOS (iNOS) protected against
the development of cardiac dysfunction
in endotoxemic mice (111,112). In a cecal
ligation and puncture (CLP) sepsis
model, genetic iNOS deletion or pharma-
cological iNOS blockade enhanced car-
diac norepinephrine responsiveness asso-
ciated with improved systolic function,
but seemed to be associated with com-
promised left ventricular relaxation (113).
In septic patients, administration of a
nonspecific NOS inhibitor increased arte-
rial pressure but decreased cardiac out-
put (114). The adverse effects of NO
might also, in part, be related to interac-
tions between NO and superoxide anions
with subsequent production of peroxyni-
trite. Peroxynitrite, rather than NO per se,
has been shown to impair muscle con-
tractility during sepsis by its ability to
denature proteins, perturb calcium flux,
and depress mitochondrial respiration
during experimental sepsis (115,116). In
contrast, neutralization of peroxynitrite
improved cardiac dysfunction in a ro-
dent model of sepsis (117). In human
septic hearts, increased expression of
iNOS and significant amounts of perox-
ynitrite were found (51). Finally, NO,
produced in large amounts during sep-
sis, can bind to complex IV of the respi-
ratory chain and then compete with oxy-
gen, inhibiting this complex and
increasing production of reactive oxygen
species (ROS) (3). High concentrations of
NO also seem to block other complexes
of the respiratory chain. Peroxynitrite
can also be very toxic for the respiratory
chain and particularly inhibits complexes
I, I, and IIT (3).

Mitochondrial Dysfunction

Sepsis and septic shock severely im-
pair the “cellular power plants,” mito-
chondria (118,119). Recent evidence
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suggests that the severity of myocardial
dysfunction and maybe even severity
and outcome of sepsis (120) could be re-
lated to mitochondrial dysfunction
(121-123). During sepsis, myocardial mi-
tochondria display ultrastructural dam-
ages in rodents (124,125) and humans
(126). Septic animal hearts exhibited re-
duced activities of mitochondrial elec-
tron transport chain enzyme complexes
(127-129). The increased mitochondrial
production of superoxide and NO (130)
in combination with the depletion of in-
tramitochondrial antioxidants during
sepsis might severely inhibit oxidative
phosphorylation and ATP generation
(120). This acquired defect in oxidative
phosphorylation prevents cells from
using molecular oxygen for ATP produc-
tion and potentially causes sepsis-in-
duced organ dysfunction (131). This con-
cept has been termed “cytopathic
hypoxia” (132,133). Interestingly, mito-
chondrial DNA seems to be more recep-
tive to LPS-induced damage than nuclear
DNA (124,134). Finally, the mitochondr-
ial permeability transition pore seems to
be involved in sepsis-induced mitochon-
drial damage in the myocardium, be-
cause its inhibition significantly im-
proved cardiac function and reduced
mortality in rodents (135).

Apoptosis

There is now increasing evidence that
apoptosis is involved in septic cardiomy-
opathy (136-138). Activation of various
caspases, the effectors of apoptosis, and
mitochondrial cytochrome c release have
been reported in cardiomyocytes follow-
ing septic challenge (139-141). Caspase 3
activation via endotoxin might also be
associated with altered calcium myofila-
ment responses, cleavage of contractile
proteins, and sarcomere disorganization
(142). Therefore, it is not surprising that
anti-apoptotic strategies have reversed
cardiac dysfunction (inhibition of cas-
pases [particularly caspase 3] averted en-
dotoxin-induced cardiac dysfunction and
heart apoptosis) (137,143). Cyclosporin A,
which inhibits mitochondrial permeabil-
ity transition and cytochrome c release,
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Figure 4. A depiction of supracellular, systemic, and molecular events involved in the car-

diomyopathy of sepsis. See text for details.

or overexpression of anti-apoptotic Bcl-2
both prevented sepsis-induced myocar-
dial dysfunction (135,144,145). Yet, there
seem to be additional parameters in-
volved in the caspase inhibitor—-mediated
cardioprotection, besides decreasing
apoptotic cell death. Blockade of caspase
activation may decrease cytokine/
chemokine production and indirectly
influence intracellular calcium homeosta-
sis (3). However, the time course of sep-
tic cardiomyopathy in humans (potential
recovery after 7 to 20 days) profoundly
challenges a central role of apoptotic cell
death as a major cause of myocardial im-
pairment. We need to understand more
precisely the involvement of apoptosis in
this setting.

CONCLUSIONS

Although tremendous research efforts
have attempted to uncover the molecular
mechanisms resulting in septic cardiomy-
opathy (Figure 4), various pieces of the
puzzle so far fail to come together as a
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big picture. Why? Despite the identifica-
tion of various mechanisms contributing
to sepsis-induced cardiac dysfunction
(such as cardiodepressant mediators, mi-
tochondrial dysfunction, or apoptosis),
we are far from understanding their exact
impact. Each theory has a major flaw that
challenges its principles. Cardiodepres-
sant mediators, such as TNF-a, IL-1f3,
IL-6, MIF, etc., are known to be elevated
early during sepsis, but return to normal
levels within 2 to 3 days. Thus, cytokine/
chemokine involvement in early cardio-
depression seems possible. However, be-
cause cardiodepression is usually re-
versed only 7 to 10 days after sepsis onset
in humans, myocardial suppression by
cytokines/chemokines during the late
stages of sepsis seems highly unlikely,
unless these mediators are predominantly
stored inside cardiomyocytes and exert
their functions mainly without being se-
creted. However, this would infer func-
tions of mediators without their interac-
tions with surface receptors. Moreover, if



apoptosis is a driving force in cardiac
dysfunction during sepsis, as various
studies suggest, we have yet to under-
stand how septic cardiosuppression can
be reversible after 7 to 10 days. Thus, is
apoptosis signaling somehow stopped at
a pre-apoptotic level; and if so, by what
molecular mechanisms? It seems that the
abnormalities leading to contractile myo-
cardial dysfunction during sepsis are
transient and that a “corrective switch”
exists, once profound sepsis is overcome,
reversing cardiomyopathy.

The explanations for all of these ques-
tions and challenges might lie in the fact
that the sepsis-induced depressed car-
diac performance recapitulates the
changes that occur during cardiac hiber-
nation, an adaptive and reversible re-
sponse otherwise seen in ischemia and
hypoxia (52). Although these changes
occurred in the setting of preserved arte-
rial oxygen tension and myocardial per-
fusion, sepsis-associated myocardial de-
pression might in fact be a form of
cardiac hibernation, triggered by the
same metabolic changes (increased glu-
cose uptake, glycogen deposits, and in-
creased steady-state levels of GLUT4)
that have been described during ische-
mia and hypoxia (52). Hibernation is
currently considered not only as a sim-
ple consequence of an oxygen deficit,
but rather as an adaptive response to
maintain cardiomyocyte viability in the
setting of reduced blood flow (146). In
stunning parallel with septic cardiomy-
opathy, the hibernating myocardium ex-
hibits reduced calcium responsiveness
(147), ultrastructural changes including
loss of myofibrils (148), loss of mito-
chondria (149), and apoptosis-induced
cell loss (150,151). Moreover, there is evi-
dence that TNF-a and iNOS contribute
to myocardial hibernation (152). Interest-
ingly, these changes seem to be dose
dependent, with moderate increases
leading to reversible myocardial dys-
function, and greater increases resulting
in irreversible injury (148). Thus, a cru-
cial question is whether exceeding a cer-
tain threshold level of TNF-a, iNOS, or
further unidentified mediators triggers

the conversion from reversible to irre-
versible myocardial dysfunction. This re-
mains to be determined.
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